
AO-Ai74 122 ACCESSING AND UPDATING FUNCTIONAL DRTARASES USING 112
CODASYL-DML(U) NAVAL POSTGRADUATE SCHOOL MONTEREV CA
8 D RODECK JUN 86

UNCLASSIFIED F/G 9/2 NL

EIIEEIIEEEIIEE
EEEEEEllll~lEI
EEEEEIIIIIEEI
EEEEEEIIEEIII
EEEEIIEEEEIII
EEEEllEEIIEEEE



18

111111.25 111 .4 111.

OICROCOPY RESOLUTION TEST CHART
O&IONAI BUREAU OF STANDARDS- 1963-A



~NAVAL POSTGRADUATE SCHOOL
NMonterey, California

I",

DTIC
I ELECTE

NOV20 1986

f B

THESIS
ACCESSING AND UPDATING FUNCTIONAL

DATABASES USING CODASYL-DML

by

Brian D. Rodeck

DJune 1986

C)

LU~
I Thesis Advisor: David K. Hsiao&A-

Approved for Public Release; Distribution is Unlimited

86 11 19 037,



UNCLASS IF IED
SECURITY CLASSIFICATION OF THIS PAGE A 0- '2-

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for Public Release;
2b DECLASSIFICATIONIDOWNGRAOING SCHEDULE Distribution is Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If apOiable)

Naval Postgraduate SchoolJ Code 52 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I f applcable)

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Claw fication)

ACCESSING AND UPDATING FUNCTIONAL DATABASES USING CODASYL-DML

12 PERSONAL AUTHOR(S)
Rodeck, Brian D.

13a TYPE OF REPORT 13b TIME COVERED 14 QArF OF RIPORT (Year, Month s P COUNT
Master's Thesis FROM TO 198, June 1
16 SUPPLEMENTARY NOTATION

!7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Data Model Transformation; DML Mapping;

ichema Transfo3mation; Multi-model DatabaseI I ystem; Muti- inqual 6atabase System;
'9 ABSTRACT (Continue on revere if neceUary ad identify by block number)

Traditional approaches to database system design and implementation
involve single-model, single-language database systems with their inherent
lack of flexibility and extensibility. An alternative to the traditional
approach to database system design and implementation is the multi-lingual
database system (MLDS). This approach allows the user to access and
update one or many databases in different data models using corresponding
data languages, thus countering the aforementioned flexibility and
extensibility restrictions.

In this thesis, we present a methodology for accessing and updating
databases stored in one model with the data manipulation facilities of a
different data model. Specifically, we design an interface for allowing

20 O,STRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

(gUNCLASSIFIEDlJNLIMITED [3 SAME AS RPT 0 DTIC USERS Unclassified
22a NAME OF RESPQNSIBLE INDIVIDUAL 22bAT,,lj HOgf(lyKlude Area Code) 22c OFFICE SYMBOL
Prof. David K. Hsiao 0u b4-2253 Code 52Hq

DO FORM 1473, 84 MAR 83 APR edition may be used untI exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

1 UNCLASSIFIED

1 .... . - 0



HI UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE VW~m Doe XI.e

#18 - KEY WORDS - (CONTINUED)

Multi-backend Database System; CODASYL-DML

#19 - ABSTRACT - (CONTINUED)

the network/CODASYL-DML user to access and update
a functional database as supported by MLDS. This
is the first step in the process of extending the
multi-lingual database system to a true multi-
model database system (MMDS).

9(,

Acces,- !

SNT! F
DMC

IJu

2 UNCLASSIFIED

SECURITY CLASSIFICATION OF T1406 PACIR(hen Dwea Etuemdj



Approved for public release; distribution is unlimited

Accessing and Updating Functional
Databases Using CODASYL-DML

by

Brian D. Rodeck
Captain, United States Marine Corps
B.S., Iowa State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1986

Author:
Brian D. Rodeck

Approved by: / ~ i ~7'd
David K. Hsiao, Thesis Advisor

- Steven A. Devprjian, Second Reader

Vincent .Lum, Chairman,
Department of Computer Science

Dean of Information ad Pnces



ABSTRACT

Traditional approaches to database system design and

implementation involve single-model, single-language

database systems with their inherent lack of flexibility

and extensibility. An alternative to the traditional

approach to database system design and implementation is

the multi-lingual database system (MLDS). This approach

allows the user to access and update one or many databases

in different data models using corresponding data

languages, thus countering the aforementioned flexibility

and extensibility restrictions.-

In this thesisq, ;e present,a methodology for accessing

and updating databases stored in one model with the data

manipulation facilities of a different data model.

Specifically, we_ dasiga an interface for allowing the

network/CODASYL-DML user to access and update a functional

database as supported by MLDS. This is the first step in

the process of extending the multi-lingual database system

to a true multi-model database system (MMDS).

4



TABLE OF CONTENTS

I. INTRODUCTION 0--------------------------------10

A. THE MOTIVATION ------ i0---------------------10

B. SOME BACKGROUND ------------------------- 12

1. The Multi-Lingual Database System --- 12

2. The Multi-Backend Database System --- 16

C. THE ORGANIZATION OF THE THESIS ---------- 17

II. THE DATA MODELS ----------------------------- 19

A. THE FUNCTIONAL MODEL -------------------- 19

1. A Conceptual View of the Model ------ 20

2. The Daplex-DDL University Database
Schema ------------------------------ 22

B. THE CODASYL DATA MODEL ------------------ 22

1. A Conceptual View of the Model ------ 25

2. The CODASYL Data Manipulation
Language ---------------------------- 27

C. THE ATTRIBUTE-BASED DATA MODEL ---------- 31

1. A Conceptual View of the Model ------ 31

2. The Attribute-Based Data Language
(ABDL) ------------------------------ 33

3. The Functional-AB(functional)
Schema Mapping Process -------------- 35

III. THREE APPROACHES TO THE MAPPING FROM THE
FUNCTIONAL MODEL TO THE CODASYL MODEL ------- 39

A. THE DIRECT LANGUAGE INTERFACE APPROACH -- 42

B. THE ATTRIBUTE-BASED POSTPROCESSING
APPROACH -------------------------------- 45

5



C. THE HIGH-LEVEL PREPROCESSING APPROACH --- 48

D. CHOOSING THE BEST APPROACH -------------- 49

IV. TRANSFORMING A FUNCTIONAL SCHEMA TO A
CODASYL SCHEMA ------------------------------ 52

A. ENTITY TYPES ---------------------------- 52

B. ENTITY SUBTYPES ------------------------- 57

C. NON-ENTITY TYPES ------------------------ 58

D. UNIQUENESS CONSTRAINTS ------------------ 60

E. OVERLAP CONSTRAINTS --------------------- 61

F. SET TYPES ------------------------------- 63

G. IMPLICATIONS OF THE METHOD CHOSEN FOR
SET-TYPE DECLARATIONS---------------------- 65

H. A COMPLETE MAPPING EXAMPLE -------------- 68

V. MAPPING CODASYL-DML STATEMENTS TO ABDL
REQUESTS ------------------------------------ 73

A. THE NOTION OF CURRENCY ------------------ 74

B. DATA STRUCTURES NECESSARY FOR
ACCURATE TRANSLATION -------------------- 75

1. The Currency Indicator Table (CIT) - 75

2. The Request Buffer (RB) ------------- 75

C. MAPPING FIND STATEMENTS ----------------- 77

1. The FIND ANY Statement -------------- 77

2. The FIND CURRENT Statement ---------- 79

3. The FIND DUPLICATE WITHIN Statement - 80

4. The FIND FIRST Statement ------------ 81

5. The FIND OWNER Statement ------------ 87

6. The FIND WITHIN CURRENT Statement --- 88

D. MAPPING GET STATEMENTS ------------------ 88

6



1. The GET and GET recordtype

Statements -----------....-------------- 89

2. The GET iteml, ... ,itemn Statement - 90

E. MAPPING DATA-UPDATING STATEMENTS -------- 90

1. The CONNECT Statement --------------- 91

2. The DISCONNECT Statement ------------ 102

3. The MODIFY Statement ---------------- 106

4. The STORE Statement ----------------- 107

5. The ERASE Statement ----------------- 110

VI. CONCLUSIONS --------------------------------- 118

A. THE CONTRIBUTION OF THE RESEARCH -------- 118

B. SOME OBSERVATIONS AND INSIGHTS ---------- 120

LIST OF REFERENCES ---------------------------------- 123

INITIAL DISTRIBUTION LIST --------------------------- 126

7



LIST OF FIGURES

1. The Multi-Lingual Database System (MLDS) ------- 13

2. Multiple Language Interfaces for the Same KDS -- 15

3. The University Database Schema ----------------- 23

4. A CODASYL Set Occurrence ----------------------- 26

5. An Attribute-Based Record ---------------------- 32

6. The Logical AB(functional) University
Database Schema -------------------------------- 37

7. The "Real" AB(functional) University
Database Schema -------------------------------- 38

8. Block Diagram Summary of MLDS ------------------ 41

9. Direct Language Interface Approach ------------- 43

10. The AB-AB Postprocessing Approach -------------- 45

11. The High-Level Preprocessing Approach ---------- 48

12. The Representation of an Entity Type in
CODASYL ---------------------------------------- 53

13. The University Database PERSON Hierarchy ------- 61

14. CODASYL Set Declaration Format ----------------- 64

15. PERSONSTUDENT Set Type Declaration ------------ 66

16. CODASYL University Database Schema Conversion -- 69

17. Information Contained in CIT ------------------- 76

18. Contents of RB After RETRIEVE ------------------ 79

19. PERSON and STUDENT Records for 'Allan Jones' --- 82

20. A Functional/AB(functional)/CODASYL
Mapping Example -------------------------------- 92

21. AB(functional) Occurrence for NULL
"Enrolled" Function ---------------------------- 97

8



22. Singleton AB(functional) "Enrolled"
Function set------------------------------------- 104

23. University Database Schema Fragment--------------112

9



I. INTRODUCTION

A. THE MOTIVATION

During the past two decades, the method by which

database systems were designed and implemented was fairly

standardized. The typical approach taken has been to

choose a data model, specify a model-based data language,

and ultimately develop a system for managing and executing

the transactions written in the data language. This

approach to database system development has resulted in

homogeneous database systems, each of which restricts the

user to a single data model and a specific model-based data

language. Some examples of systems developed using this

approach include IBM's Information Management System (IMS)

supporting the hierarchical data model and Data Language I

(DL/I), Sperry Univac's DMS-1100 which supports the network

data model and the CODASYL data language, IBM's SQL/Data

System, dedicated to the relational data model and the

Structured English Query Language (SQL), and Computer

*Corporation of America's Local Data Manager (LDM), which

uses the functional data model and the Daplex data

language.

An unconventional approach to the problem of database

management system development, referred to as the multi-

lingual database system (MLDS), eliminates the restrictions

10

- *. v % :-' .



-- - ~ W W W~WWrW W W WW7

outlined above [Ref. 1]. MLDS is designed to give the user

the ability to access and manage a large collection of

databases, using several data models and their

corresponding data languages. The major design goal of

MLDS has been the development of a system that is

accessible via a hierarchical/DL/I interface, a

relational/SQL interface, a network/CODASYL interface, and

an functional/Daplex interface. Thus, MLDS functions as

though it were a heterogeneous collection of database

.N systems instead of a single data model, single data

language system.

Some of the advantages of MLDS are the reusability of

database transactions developed on a conventional system,

economy and effectiveness of hardware upgrades (since just

one system is upgraded instead of a number of different

systems), and its ability to support a variety of databases
built around any of the well-known data models.

There is one further step that can be taken towards a

more complete utilization of databases currently available

with MLDS. The current version of MLDS has certain

restrictions: network databases are accessable only

through CODASYL-DML, hierarchical databases are accessable

only through DL/I, relational databases are accessible only

through SQL, and functional databases are accessible only

through Daplex. A system which would remove these

restrictions would have profound implications. By allowing

11 -- ........ , '.: .



the databases based on different models to be accessed by

data languages based on different data models, we extend

our multi-lingual database system. to a multi-model database

system (MMDS). In this environment, a user of one data

model could access and manipulate information stored in

another data model. The obvious benefit of extending the

multi-lingual database system to a multi-model database

system is to provide true sharing of databases--an ample

motivation for the effort. As a first step, in this thesis

we investigate the methods which allow a CODASYL-DML user

to access a functional database.

B. SOME BACKGROUND MATERIAL

In this section, some background material for the

thesis is provided. First, we give the reader an overview

of the system structure and system functions of the multi-

lingual database system (MLDS). Then, we introduce the

reader to the architecture of the multi-backend database

system (MBDS). MBDS is the underlying database system

utilized by MLDS to support database transaction

processing.

1. The Multi-Lingual Database System

The system structure of the multi-lingual database

system (MLDS) is shown in Figure 1. Users issue

transactions through the language interface layer (LIL)

using a user-chosen data model (UDM) and written in a

corresponding model-based data language (UDL). LIL then

12



routes the user transactions to the kernel mapping system

(KMS). KMS has two tasks. First, if the user specifies

that a new database is to be created, KMS transforms the

UDM-database definition to an equivalent kernel-data-model-

(KDM)-database definition. The KDM-database definition is

then sent to the kernel controller (KC). KC sends the KDM-

database definition to the kernel database system (KDS).

Upon completeion, KDS notifies KC, which in turn notifies

the user that the database definition has been processed

and that the loading of the database may commence.

UDM: User Data Model ( Data Model
CDL User Data Language
LIL Language Interface Layer Data Language

KMS Kernel Mapping System
KC Kernel ControllerE System Module
KFS Kernel Formatting System
KDM Kernel Data Model O Information Flow

KDL Kernel Data Language
KDS Kernel Database System

Figure 1. The Multi-Lingual Database System (MLDS)

13



The second task of KMS is to handle UDL

transactions. In this situation, KMS translates the UDL

transaction to the equivalent KDL transaction and sends it

to KC, which in turn sends the KDL transaction to KDS for

execution. Upon completion, KDS sends the results in KDM

form back to KC. KC forwards these results to the kernel

formatting system (KFS) for transforming them from the KDM

form to the UDM form. After the data is transformed, KFS

returns the results, i.e., the response set, to the user

via LIL.

One last point must be made concerning the general

system structure. Four of the five components of the

multi-lingual database system, namely LIL, KMS, KC and KFS,

are referred to as a language interface. For MLDS, a new

language interface is required for each chosen data

language. For example, there is a set of LIL, KMS, KC and

KFS for the relational/SQL language interface, a separate

set of these four components for the hierarchical/DL/I

language interface, a third set of components for the

network/CODASYL-DML language interface and a fourth set for

the functional/Daplex language interface. KDS, on the

other hand, is a single and major component that is

accessed and shared by all of the various language

interfaces, as depicted in Figure 2. The concept of

language interfaces plays a central role in this thesis.

14



DM. KKSS

LU. KC,

Figure 2. Multiple Language Interfaces
for the Same KDS

In the preceedirng discussion of MLDS, we have

discussed both KDM and KDL in generic terms. In fact, the

attribute-based data model and attribute-based data

language (ABDL) have been chosen as KDM and KDL,

respectively, for MLDS. A series of papers [Refs. 2,3,4)

has shown how the relational, hierarchical, network and

functional data can be transformed to attribute-based data,

while at the same time presenting preliminary work on the

corresponding data-language translations. In more recent

work, the complete set of algorithms for the data-language

translations from SQL to ABDL Refs. 5,6), from DL/I to

15



ABDL [Ref. 7], from CODASYL-DML to ABDL [Ref. 8], and from

Daplex to ABDL [Ref. 9] have been specified. Software

development efforts for the language interfaces (i.e., one

set of LIL, KMS, KFS and KC for the relational interface

[Ref. 10], another set for the hierarchical interface [Ref.

11] and a third set for the network interface [Ref. 12])

have been completed. The fourth set for the functional

language interface has not been completed at the time of

this thesis, although the initial implementation effort has

been documented [Ref. 13].

Beyond the simple fact that the implementation work

has completed using the attribute-based data model, an

equally important reason for choosing it and ABDL as KDM

and KDL, respectively, lies in the availability of a

research database system in current use at the Naval

Postgraduate School Laboratory for Database Systems

Research. This database system, the multi-backend database

system (MBDS), uses respectively the attribute-based data

model and ABDL as the native data model and data language

of the system. MBDS is discussed in the following section.

2. The Multi-Backend Database System

The multi-backend database system (MBDS) has been

designed to overcome the performance and upgrade problems

associated with the traditional approach to database system

design. This goal has been realized through the

utilization of multiple backends configured in a parallel

16



fashion. The backends have identical hardware, replicated

software, and their own disk systems. In the multi-backend

configuration, there is a backend controller, which is

responsible for supervising the execution of database

transactions and for interfacing with the hosts and users.

The backends perform the database operations with the

database stored on the disk system of the backends. The

controller ard backends are connected by a communications

bus. Users access the system through either the hosts or

the controller directly.

Performance gains are realized by increasing the

number of backends. If the size of the database and the

size of the responses to the transactions remain constant,

then MBDS produces a nearly reciprocal decrease in the

response times for the user transactions when the number of

backends is increased. On the other hand, if the number of

backends increases proportionally with the increase in the

database size and transaction responses, then MBDS produces

nearly invariant response times for the same transactions.

For a more detailed discussion of MBDS the reader is

referred to [Refs. 14 and 15].

C. THE ORGANIZATION OF THE THESIS

In this thesis, the first developmental work on the

multi-model database system (MMDS) is described. We

investigate several methods for accessing and updating a

17



functional database, using the network/CODASYL-DML model

and language, within the context of MLDS and MBDS. Having

chosen a particular method, we discuss issues which concern

the schema mapping as well as the DML translation. We also

present a specification for the kernel mapping system (KMS)

that is to be used in the network-functional interface.

In Chapter II, we provide a description of the

functional, network (i.e., CODASYL) and attribute-based

(AB) data models, as well as their associated data

languages. In Chapter III, we examine three approaches to

mapping between functional and CODASYL databases. We then

choose an approach and provide justification for the chosen

approach. In Chapter IV, a methodology for mapping an

fuctional schema to a CODASYL schema is presented, along

with a complete mapping example. In Chapter V, we discuss

the necessary data manipulation language translations

between CODASYL-DML and ABDL. Finally, in Chapter VI, we

make our conclusions about the proposed design.

18

p*- !



II. THE DATA MODELS

In this chapter, we provide a summary description of

the functional, network and attribute-based data models.

Only the data definition portion (DDL) of the functional

model is discussed, since the approach chosen does not

involve the data manipulation portion of Daplex. The other

data models are summarized in their entirety.

A. THE FUNCTIONAL DATA MODEL

The functional data model was developed by Shipman

while working at MIT and CCA [Ref. 16]. The model is based

on the artificial intelligence idea of the semantic net, a

structure used to represent relationships between objects

or entities. Each entity has a corresponding set of

functions associated with it. Functions may provide one or

more values of varying types, or may provide a connection

or "arc" to other entities. These entities may be

connected via functions to still other entities, and so on.

Thus, an entity can be thought of as a dimensionless token

whose properties are determined by functions of data values

or other associated entities. One can see that information

is obtained either directly through a function of the

associated data value or via a composition of functions.

The idea of functional composition allows one to explore

19



the associations within the network. This concept is

crucial to the functional model.

The data definition language (DDL) for the functional

model is used to define the database schema being used. We

describe its constructs previously mentioned in greater

detail, along with other capabilities provided in Daplex.

The format of the Daplex DDL is then demonstrated by using

it to define the University database, taken from Shipman's

paper and the Daplex User's Manual [Ref. 17]. This schema

is used extensively throughout the rest of the thesis.

1. A Conceptual View of the Model

The functional data model is mainly concerned with

two classes of items--scalar values and entities. Scalar

* values are simply atomic values which have a literal

representation, like "2", or "Hsiao". On the other hand,

an entity has no literal value associated with it, nor is

it in any way atomic. One can print only scalar-valued

functions of it. For example, an entity named PERSON has

no value associated with it. However, the function

"name(PERSON)" denotes a specific value which may be

printed out. On the other hand, the function

employees_of(PERSON) may associate it with certain entities

named EMPLOYEE, with no immediately printable value

available.

Functions defined over entities can therefore
return scalar values, entities, or sets of entities. A

20



distinction is made between single-valued and multi-valued

functions, and again concerning whether the function

returns scalar values or entities. A multi-valued function

is very similar to the set type described in the network

model.

Subtyping is also used in the functional model. An

entity may be a subtype of another entity. Thus, the

EMPLOYEE entity is a subtype of the PERSON entity, since

all EMPLOYEEs are PERSONs. Subtyping establishes a

relationship among entities, often referred to as an ISA

relationship. As with the semantic net in artificial

intelligence, implicit value inheritance goes along with

subtyping of entities. For example, if a PERSON entity has

two functions, name and ssn (social security number), an

EMPLOYEE subtype of PERSON inherits both of these

functions.

Non-entity types are also allowed in Daplex DDL.

Daplex has string, integer, floating point and enumeration

data types. Using these as building blocks, Daplex allows

one to declare ranges of values, base types, subtypes of

the base types, and derived types which inherit

characteristics of a named type or subtype.

One important concept dealt with in Daplex DDL is

that of overlap constraints. Referring to the discussion

on subtypes and putting their definition in a slightly

different light, one can see that the set of all EMPLOYEEs

21

I



is in a one-to-one correspondence with a subset of the set

of all PERSONs. In a like manner, a STUDENT entity may

also be defined as a subtype of PERSON. The two subtype

sets (STUDENT and EMPLOYEE) may overlap or be disjoint,

depending on whether a STUDENT can also be an EMPLOYEE. In

Daplex, the overlap of any entity types or subtypes must be

explicitly defined. All sets not specifically overlapped

are assumed to be disjoint.

2. The Daplex-DDL University Database Schema

We can now present the University database schema

as defined by Shipman. For each entity type and subtype

declared, the names of the functions on them are defined.

If the functions are scalar-valued, the usual data type

declaration is given. If they are single-valued functions

associated with another entity type or subtype, the entity

name is given as the type of the function. If they are

multi-valued functions mapping to another entity type or

subtype, the type is declared to be "set of <entity name>".

Finally, key functions are declared by "unique" clauses,

and subtypes by "overlap" clauses. The University database

is shown in Figure 3.

B. THE CODASYL DATA MODEL

In general, the network (CODASYL) data model is based

on the concept of directed graphs. The nodes of the graphs

usually represent entity types which are records, while the

arcs of the graphs correspond to relationship types that

22

%*I



DATABASE university IS

TYPE person;
SUBTYPE employee;
SUBTYPE supportstaff;
SUBTYPE faculty;
SUBTYPE student;
SUBTYPE graduate;
SUBTYPE undergraduate;
TYPE course;
TYPE department;
TYPE enrollment;
TYPE rank name IS (assistant, associate, full);
TYPE semester-name IS (fall, spring, summer);
TYPE grade _point IS FLOAT RANGE 0.0 .. 4.0

TYPE person IS
ENTITY

name : STRING (1 .. 25);
ssn : STRING (1 .. 9) := "000000000";

END ENTITY;

SUBTYPE employee IS person
ENTITY

home-address : STRING (1 .. 50);
office : STRING (1 .. 8);
phones : SET OF STRING (1 .. 7);
salary : FLOAT;
dependents : INTEGER RANGE 0 .. 10;

END ENTITY;

SUBTYPE support_staff IS employee
ENTITY

supervisor : employee WITHNULL;
full time : BOOLEAN;

END ENTITY;

SUBTYPE faculty IS employee
ENTITY

rank : rank name;
teaching : SET OF course;
tenure : BOOLEAN := FALSE;
dept : department;

END ENTITY;

Figure 3. The University Database Schema

23



SUBTYPE student IS person
ENTITY

advisor : faculty WITHNULL;
major : department;
enrollments : SET OF enrollment;

END ENTITY;
SUBTYPE graduate IS student

ENTITY
advisorycommittee : SET OF faculty;

END ENTITY;

SUBTYPE undergraduate IS student
ENTITY

gpa : grade point := 0.0;
year : INTEGER RANGE 1 .. 4 1;

END ENTITY;

TYPE course IS
ENTITY

title : STRING (1 .. 10);
deptmt : department;
semester : semester name;
credits : INTEGER;
taught by : SET OF faculty;

END ENTITY;

TYPE department IS
ENTITY

name : STRING (1 .. 20);
head : faculty WITHNULL;

END ENTITY;

TYPE enrollment IS
ENTITY

class : course;
grade : gradepoint;

END ENTITY;

UNIQUE ssn WITHIN person;
UNIQUE name WITHIN department;
UNIQUE title, semester WITHIN course;

OVERLAP graduate WITH faculty;

END university;

Figure 3. (Continued)

24



are represented as connections between records. The

CODASYL (Conference on Data System Languages) data model is

referred to by Tsichritzis and Lochovsky [Ref. 18:pp. 119-

132] as the most comprehensive specification of a network

model that exists. It is important to note that MLDS uses

only a subset of the entire data model as specified by

CODASYL. The specific constructs and clauses used in

connection with MLDS are described clearly and succinctly

by Wortherly [Ref. 8]. In an effort to facilitate

understandability, our description of the network data

model follows his work.

1. A Conceptual View of the Model

CODASYL databases are networks of record types and

set types, where records and sets are the entities which

describe the databases. A record type in a CODASYL

database is a collection of hierarchically related data

items or field names [Ref. 19]. A record is any occurrence

of a record type and has specific values assigned to the

data items named in the schema declarations. This implies

that a record type is simply a generic name for all of the

records that are described by the same template.

Set types in a CODASYL database indicate

relationships between record types. They consist of a

single record type called the owner record type, and one or

more record types called the member record types. Thus, a

set type expresses explicit associations between different

25



record types in the database. This characteristic makes it

possible for a designer to model a large variety of real-

world database management problems involving diverse record

types. It is important to note the fact that the owner

record type of a set type is not allowed to be a member of

the same set type.

Set types have occurrences just as record types do.

Each occurrence of a set type has one occurrence of the

owner record type and zero or more of each of its member

record types. Again it must be noted that a record

occurrence cannot be present in two different occurrences

of the same set type. This qualification emphasizes the

pairwise disjointness of set occurrences of a given set

type. Figure 4 gives an example of a set occurrence

involving an owner record occurrence and two member record

occurrences.

S (an owner record occurrence)
---------------------------

I S2 I Jones I 10 I Paris I
---------------------------

(a set occurrence)
(S-SP)

(two member record occurrences)

SP SP
------------------ ------------------
I S2 I P1 1 300 1 I S2 I P2 1 400 1
----------------- -----------------

Figure 4. A CODASYL Set Occurrence

26



2. The CODASYL Data Manipulation Language

CODASYL-DML is a procedural language. The user of

a CODASYL database writes his programs in a general-purpose

language that hosts the CODASYL-DML. In general, most

operations necessary in a CODASYL database are carried out

by "navigating" through set occurrences. The starting

point for this navigation is usually the current record of

the run unit. The run unit is the application program

(transaction) being executed. A full explanation of

currency will be provided later in the thesis. Other DML

operations can be based on the current record occurrence of

a set type or record type.

CODASYL-DML has several primary operations which

support the primary database operations of retrieval,

insertion, deletion and modification (updating existing

records). Different implementations provide varying

collections of these operations, but we concentrate our

discussion on the basic ones.

The most important primary operation of the

CODASYL-DML is the FIND statement. This statement is used

to establish the currency of the run unit, and optionally

to establish the currency of the set type and the record

type. The general format of the FIND statement is

FIND record-selection-expression [ ],

27



where the square brackets contain optional expressions for

the suppression of updates to the currency indicators. In

other words, we may suppress the updating of the currency

for a record type, a set type, or both. The record-

selection-expression has several different forms, each

designed to access a particular record in three different

ways: without reference to a previously accessed record;

relative to a previously accessed record; or by repetition.

The GET statement in CODASYL-DML complements the

FIND statement. Once a record is found, the GET statement

places the record in the transaction's working area for

access by the transaction. There are two basic formats for

the GET statem( . They include GET record type, which

gives the transaction access to the entire record, and GET

items IN record-type, which gives access only to requested

data items in the record type.

The STORE statement is used to place a new record

occurrence into the database. The programmer must build up

an image of the record prior to the store request using

assignment statements which are a part of the host language

in which CODASYL-DML is embedded. Once the record image

has been created, the proper set occurrence for the record

must be selected by the database management system.

The set occurrence in which the new record is

stored is determined by the SET SELECTION clause specified

in the schema definition for the object database. The

28

Zp



three options available are: BY APPLICATION, which means

that the application program (transaction) is responsible

for selecting the correct occurrence; BY VALUE, which means

the system selects the proper occurrence based on data item

values specific to the owner of the set occurrence desired;

and BY STRUCTURAL, which means that the system selects an

occurrence by locating the owner record with a specific

item value equal to the value of that same item in the

record being stored. The restriction on the last two

options is that the data items being used must have been

specified with DUPLICATES NOT ALLOWED in the schema

definition.

If the user transaction desires to manually insert

records into the database, two requirements exist. First,

the schema definition must include the INSERTION IS MANUAL

clause in the set description for this particular member

record. Then the CONNECT statement is used, instead of the

STORE statement, for insertion of the record into the

database. The record to be inserted is the current record

of the run unit. The set occurrence into which the record

is to be inserted is determined in the same way as for the

STORE statement.

There is also a statement in the CODASYL-DML which

performs the opposite operation, namely, the manual removal

of a record occurrence from a set. The DISCONNECT

statement performs this operation. It disconnects the

29



current record of the run unit from the occurrence of the

specified set that contains the record. The record

occurrence still resides within the database, but is no

longer a member of the specified set. There is a

qualification involved with this statement, however. The

record to be disconnected must have a RETENTION IS OPTIONAL

clause in the member description for the set type in tae

schema.

In order to delete records from a CODASYL database,

the ERASE statement is used. There are four basic options

to this statement, but two are not used in connection with

MLDS. The simplest of the two used in MLDS is the ERASE

* without the ALL option. This statement causes the current

record of the run unit to be deleted from the database if,

and only if, it is not the owner of a non-empty set. If it

is the owner of a non-empty set, the ERASE fails.

The ERASE ALL statement causes the current record

of the run unit to be deleted whether or not it is the

owner of a non-empty set. Additionally, this option causes

each member record of the set to be deleted, and if they

are owners of non-empty sets, their members are deleted as

well. This action continues all the way down the database

hierarchy. As one can see, an entire database could be

destroyed if the user is not careful when using this

option.

30
q)



The final statement included in the MLDS subset of

CODASYL-DML is the MODIFY statement. It is used to modify

values of data items in a record occurrence. This includes

modifying all data items or any subset of the data items in

the record type. It may also be used to change the

membership of a record occurrence from one set occurrence

to another, as long as they are of the same set type.

C. THE ATTRIBUTE-BASED DATA MODEL

The attribute-based model was originally described by

Hsiao [Ref. 20]. It is a very simple but powerful data

model capable of representing many other data models

without loss of information. It is this simplicity and

universality that makes the attribute-based model the ideal

choice as the kernel data model for the MLDS, and the

attribute-based data language (ABDL) as the kernel language

for the system.

1. A Conceptual View of the Model

The attribute-based data model is based on the

notion of attributes and values for the attributes. An

attribute and its associated value is therefore referred to

as an attribute-value pair or keyword. These attribute-

value pairs are formed from a Cartesian product of the

attribute names and the domains of the values for the

attributes. Using this approach, any logical concept can

be represented by the attribute-based model.

31



A record in the attribute-based model represents a

logical concept. In order to specify the concept

thoroughly, keywords must be formed. A record is simply a

concatenation of the resultant keywords, such that no two

keywords in the record have the same attribute.

Additionally, the model allows for the inclusion of textual

information, called the record body, in the form of a

(possibly empty) string of characters describing the record

or concept. Figure 5 gives the format of an attribute-

based record.

(<attributel,valuel>,...,
<attributen,valuen>,
{text )

Figure 5. An Attribute-based Record

The angled brackets, <,>, are used to enclose a keyword

where the attribute is first followed by a comma and then

the value of the attribute. The record body is then set

apart by curly brackets, (,). The record itself is

identified by enclosure within parentheses. As can be seen

from the above, this is quite a simple way of representing

information.

In order to access the database, the attribute-

based model employs an entity called predicates. A keyword

predicate, or simply predicate, is a triple of the form

(attribute, relaticnal operator, value). These predicates

32



are then combined in disjunctive normal form to produce a

query of the database. In order to satisfy a predicate,

the attribute of a keyword in a record must be identical to

the attribute of the predicate. Also, the relationship

specified by the relational operator of the predicate must

hold between the value of the predicate and the value of

the keyword. A record satisfies a query if all predicates

of the query are satisfied by certain keywords of the

record. A query of two predicates

(FILE = PERSON) and (SSN = 123456789)

would be satisfied by any record of file PERSON whose SSN

is 123456789, and it would have the form,

(<attributel,valuel>, ... ,<FILE,PERSON>, ...

<SSN,123456789>, ... ,<attributen,valuen>,(text)).

2. The Attribute-Based Data Language (ABDL)

The ABDL as defined by Bannerjee, Hsiao and Kerr

[Ref.21] was originally developed for use with the Database

Computer (DBC). This language is the kernel language used

in the MLDS. The ABDL supports the five primary database

operations, INSERT, DELETE, UPDATE, RETRIEVE and RETRIEVE-

COMMON. Those of use to us are INSERT, DELETE, UPDATE and

RETRIEVE. A user of this language issues either a request

or a transaction. A request in the ABDL consists of a

33



primary operation with a qualification. The qualification

specifies the portion of the database that is to be

operated on. When two or more requests are grouped

together and executed sequentially, we define this to be a

transaction in the ABDL. There are four types of requests,

corresponding to the four primary database operations

listed above. They are referred to by the same names.

Records are inserted into the database with an

INSERT request. The qualification for this request is a

list of keywords and a record body. Records are removed

from the database by a DELETE request. The qualification

for this request is a query.

When records in the database are to be modified,

the UPDATE request is utilized. There are two parts to the

qualification for this request, namely, the query and the

modifier. The query specifies the records to be modified,

while the modifier specifies how the records are to be

changed.

The final request mentioned here is the RETRIEVE

request. As its name implies, it retrieves records from

the database. The qualification for this request consists

of a query, a target-list and an optional "by" clause. The

query specifies the records to be retrieved. The target-

list contains the output attributes whose values are

required by the request, or it may contain an aggregate

operation, i.e., AVG, COUNT, SUM, MIN or MAX on one or more

34



output attribute values. The by-clause is optional and is

used to group records when an aggregate operation is

specified.

As indicated, ABDL consists of some very simple

database operations. These operations, nevertheless, are

capable of supporting complex and comprehensive

transactions. Thus, ABDL meets the requirement of

capturing all of the primary operations of a database

system, and is quite capable of filling the role of kernel

data language for MLDS.

3. The Functional-AB(functional) Schema
Mapping Process

Of great importance to our thesis is the mapping of

a functional schema to an attribute-based (AB) schema.

This mapping should maintain the characteristics and

constraints of the functional schema within the AB schema.

For the purposes of this thesis, we call such a schema an

AB(functional) schema, since it is the representation of a

functional schema in AB. The algorithm for the functional-

AB(functional) mapping is described and implemented in

previous theses [Refs. 9,13], and therefore not described

in detail here. We would, however, like to provide a quick

overview of the mapping process. Basically, the general

structure of the mapping has an AB record type being

created for each entity type or entity subtype in the

functional database. Within a particular AB record type,

35



the attribute-value pairs are specified for the entity type

or subtype name, for-each function in the type or subtype,

and for each type or subtype that the current type

inherits.

We now demonstrate and discuss this process with an

example. Of special interest to us is the schema mapping

from the functional University database schema depicted in

Figure 3 to its equivalent AB(functional) schema. Figure 6

shows what may be considered a logical view of the

AB(functional) schema. Herein, we can determine what the

relationships are between records by the recursive database

key declarations. A good example of this is found in the

third file declaration, for "support-staff". The database

key for "supportstaff" is declared as

<suuport staff, <employee, <person,**>>>

* We can therefore see that relationships exist between the

"support_staff", "employee" and "person" files.

The actual schema maintained is shown in Figure 7.

Here, we see that the information maintained is far less

detailed. The corresponding declaration for the database

key in "supportstaff" is

<support_staff, integer>

4Any further information required is obtained from the

functional schema which is also maintained.

36



(<File, person>, <person, **>, <name, string>,
<ssn, string = 000000000>)

(<File, employee>, <employee, <person, **>,
<home address, string>, <office, string>,
<phones, set of string>, <salary, float>,
<dependents, integer range>)

(<File, supportstaff>,
<supportstaff, <employee, <person, **>>>,
<supervisor, <employee, <person, **>>>,
<full-time, boolean>)

(<File, faculty>,
<faculty, <employee, <person, **>>>,
<rank, rankname>, <teaching, <course, ***>>,
<tenure, boolean = FALSE>,
<dept, <department, ****>>)

(<File, student>,
<student, <person, **>>,
<advisor,<faculty,<employee,<person,**>>>>,
<major, <department, ****>>,
<enrollments, <set of enrollment, *****>>)

(<File, graduate>,
<graduate, <student, <person, **>>>,
<advisory_committee,<faculty, <employee,

<person,**>>>>)

(<File, undergraduate>,
<undergraduate, <student, <person, **>>>,
<gpa, gradepoint>, <year, integer

range 1 .. 4 :=l>)

(<File, course>,
<course, ***>, <title, string>
<dept, <department, ****>, <semester, semester-name>,
<credits, integer>)

(<File, department>, <department, ****>,
<head,<faculty,<employee,<person, **>>>>,

(<File, enrollment>, <enrollment, *****>,
<class, <course, ***>>,
<grade, gradepoint>)

Figure 6. The Logical AB(functional) University
Database Schema

37



(<File, person>, <person, integer>, <name, string>,
<ssn, string = 000000000>)

(<File, employee>, <employee, integer>,
<homeaddress, string>, <office, string>,
<phones, string>, <salary, float>, ** MULT REC'DS,

PHONE SET **
<dependents, integer>)

(<File, supportstaff>,
<supportstaff, integer>,
<supervisor, integer>,
<fulltime, integer>)

(<File, faculty>,
<faCulty, integer>,
<rank, string>, <teaching, integer>,
<tenure, boolean = FALSE>,
<dept, integer>)

(<File, student>,
<student, integer>,
<advisor, integer>,
<major, integer>,
<enrollments, integer>) ** MULT REC'DS FOR

MULTI-VALUED SET **

(<File, graduate>,
<graduate, integer>,
<advisory_committee, integer>)

(<File, undergraduate>,
<undergraduate, integer>,<gpa, float>, <year, integer>)

(<File, course>,
<course, integer>, <title, string>
<deptmt, integer>,
<semester, string>, <credits, integer>)

(<File, department>, <department, integer>,
<head, integer>)

(<File, enrollment>, <enrollment, integer>,
<class, integer>,
<grade, float>)

Figure 7. The "Real" AB(functional) University
Database Schme

38



III. THREE APPROACHES TO THE MAPPING FROM THE
FUNCTIONAL DATA MODEL TO THE CODASYL DATA MODEL

As previously mentioned, this thesis is directed toward

providing the capability for the user of the

network/CODASYL-DML language interface to access and/or

update a database that has been defined using the

functional/Daplex language interface. A typical example

would be the user of the network language interface having

some updates to be done for a friend, who operates on the

functional language interface. This user would need to see

what the other database looked like in order to operate on

the database. Unfortunately, the user only understands a

network schema and CODASYL-DML, so these are the only tools

he can work with.

In this scenario, we must provide the network/CODASYL-

DML user with a method to access the functional database.

The sequence of events in this scenario would be as

follows:

1. The user requests to see a specific, named database
(in our case, a functional database).

2. The screen displays the database in a network
schema representation.

3. Having viewed this network schema, the user
composes the CODASYL-DML transaction(s) necessary
to accomplish the task.

4. The DML statements are applied to the attribute-
yielding the desired result.

039

-I

4-a.-.



In previous theses, we have seen the language

interfaces discussed and specified of the network model and

the AB(network) model, and of the functional model and the

AB(functional) model [Refs. 8,9]. The basic idea is that

the database itself is stored in the AB model, rather than

the network or functional models. This entire process is

transparent to the user. That is, the user works with the

network (or functional) schema and composes DML (or Daplex)

transactions to access and/or update the database. The

user may not know that the DML (or Daplex) transactions are

actually translated into ABDL requests. It is the language

interface of the network model and AB(network) database,

and of the functional model and AB(functional) database

which accomplishes these tasks. Figure 8 depicts these

relationships, and is used as the basis for further

illustrations in this chapter.

With the context of the existing MLDS language

interfaces in mind, we can return to the previous scenario.

We need to provide the user with a network schema

representing the target (functional) database, and we need

to accept his CODASYL-DML statements and correctly apply

them to the AB(functional) database. In considering the

best way to accomplish the aforementioned tasks, three main

strategies or approaches come to mind. The first approach,

the direct language interface approach, involves creating a

new language interface between the network model and the

40



NETWORK FUNCTIONAL
TRANSACTIONS TRANSACTIONS

INTERFACE INTERFACE

ATTRIBUTE- ATTRIBUTE-

BASED NETWORK BASED FUNCTIONAL

REPRESENTATION REPRESENTATION

Figure 8. Block Diagram Summary of MLDS

AB(functional) database, along with a facility to translate

from the functional schema to the network schema. The

second approach, the AB-AB postprocessing approach, seeks

to create a language interface of the AB(functional) and

AB(network) databases along with a translator of the

AB(functional) to network schemata. Finally, the third

approach, the high-level preprocessing approach, uses the

41



schema translator in the first approach, and translates

CODASYL-DML statements into Daplex DML statements.

In the rest of this chapter, we discuss each of the

three approaches in turn. For each approach, we give

advantages as well as disadvantages . Finally, we compare

the approaches described and select the best one for the

network-functional data model mapping.

It should be noted that there are many possible data

model mappings, since relational, hierarchical, network,

functional and attribute-based data models are all

supported in MLDS. There are other mappings which may be

implemented at a later time, for which perhaps one of the

approaches not chosen would be ideal. Therefore, the

approaches not chosen are also presented in some detail, in

the hope that they will offer ideas for future theses.

A. THE DIRECT TANGUAGE INTERFACE APPROACH

The direct language interface approach can be depicted

as in Figure 9. Herein, we see the basic figure depicted

in Figure 8 with two added modules, namely, the Schema

Translator and the Direct Language Interface. The schema

translator represents a process which produces a

network schema representing the characteristics and

constraints of the functional schema. This process is

initiated at the point at which the user specifies that he

is a network user and wishes to access and/or update a

functional database. The direct language interface accepts

42

K4111 )II ) 11 HRM



TRANSLATOR

NETWORK FUNCTIONAL
TRANSACTIONS] TRANSACTIONS]

LANGUAGEUDIE .INGURAGE
LANECUAG

INTERFACE ITRAE NEFC

ATTRIBUTE- ATTRIBUTE-
BASED NETWORK BASED FUNCTIONAL

REPRESENTATION REPRESENTATION

Figure 9. Direct Language Interface Approach

CODASYL-DML statements as input and maps them to attribute-

based data language (ABDL) requests. One can see that,

except for the schema translator, this approach is

basically the same as has been taken with the network to

AB(network) and functional to AB(functional) language

interfaces. One can further imagine, for example, language

interfaces from network to AB(network), AB(functional),

AB(relational) and AB(hierarchical) databases in a fully

connected, network language interface environment.

Eventually, the other major data models could be connected

43



as well, so that one could work in any preferred data model

and access any database. Of course, schema translators

from each of the data models to each other would be

required as well.

A major advantage to this approach is that the

interface is not executed serially either before or after

the other interfaces in order to achieve the desired

result. As we see in the next two sections, what are in

essence preprocessing and postprocessing steps are required

of the other approaches before the language interface is

entered. Seen from a conceptual standpoint, going through

one interface would appear to be faster than going through

two. Furthermore, the direct language interface would seem

to take the same amount of time to execute DML commands

against a functional database as is needed to execute DML

commands against a CODASYL database. Finally, the schema

translation would be a one-time, on-demand operation,

maintained for the duration of the user session.

One disadvantage of this approach is that the

AB(functional) database is not designed to accomodate the

operations required in CODASYL-DML. As was discussed in a

previous thesis, special attributes are included in AB

records representing a network database which allow them to

be easily manipulated and accessed in the network model

[Ref. 8]. These attributes are non-existent in AB records

representing a functional database. Consequently, AB

V 44



records of a functional database are not capable of being

manipulated by means of DML transactions.

B. THE AB-AB POSTPROCESSING APPROACH

The AB-AB postprocessing approach can be depicted as in

Figure 10. In it, we see one extra module added to the

basic diagram of Figure 8, namely the AB-AB Translator.

NETWORK FUNCTIONAL
TRANSACTIONSI  TRANSACTIONS1

LANGUAGE LANGUAGE
INTERFACE INTERFACE

ATTRIBUTE- ATTRIBUTE-

BASED NETWORK BASED FUNCTIONAL

REPRESENTATION REPRESENTATION

Figure 10. The AB-AB Postprocessing Approach

Given a collection of real-world data, we could define

a database for it in any of the data models supported by

45



MLDS - hierarchical, relational, network and functional.

Using algorithms and methodologies already described in

previous theses, the defined databases can be converted to

AB(hierarchical), AB(relational), AB(network) and

AB(functional) databases. It seems reasonable to suppose

that the differences between AB databases (in this case,

the AB(functional) and AB(network) databases) could be

determined to the extent that one could "translate" from

one to another as needed. So, if a network user wished to

access a functional database, he could see it by viewing

the AB-AB translation of it. It also seems possible that

transactions could be mapped back to the original

AB(functional) database. The advantage of this approach is

that it takes maximal advantage of the existing interfaces

without changing them.

There are several disadvantages inherent in this

approach, which tend to disqualify it from consideration

for our study. One disadvantage is the fact that the

module would have to be executed twice for each procedure:

once to map DML statements from AB(network) to

AB(functional), and once to map the results back. Thus,

the approach appears to take twice as long from a

conceptual standpoint.

The disadvantage in this case resulted from the fact

that the AB(functional) schema cannot be mapped directly to

a CODASYL schema without having ongoing access to the

46

~~~ ~ ~~~~~~~~~~~~~~ .....- .-. .. ... .. .'- -"4 4 " " "" ". ' ''' --



functional schema. The reason for this can be demonstrated

using the depictions of the AB(functional) University

database found in Figures 6 and 7. Logically, we know that

the schema represents the relationships found in Figure 6,

but the actual schema is not stored in this manner.

Instead, Figure 7 depicts the way that the schema is

actually stored, and demonstrates the fact that actual

relationships cannot be deduced from it. Rather, these

relationships are found in the functional schema.

Therefore, in the context of the functional language

interface the AB(functional) schema is sufficient for its

purposes, but in the context of AB(functional) and CODASYL

schemata, insufficient information is available for a

direct translation of them. One may make the argument that

the functional-AB(functional) schema translation can

somehow be redesigned such that the AB(functional) schema

can be translated into a CODASYL schema, preserving the

characteristics and constraints of the functional schema.

While it is unclear whether this is possible, a cogent

argument against this is that the new schema might well be

untranslatable to hierarchical or relational schemata.

Since, in the broad view, links may be forged between these

data models and the functional data model, it seems ill-

advised to "custom-modify" the functional-AB(functional)

schema translation process.

47



C. THE HIGH-LEVEL PREPROCESSING APPROACH

The high-level preprocessing approach can be depicted

as in Figure 11. Again, we see that two modules have been

DML

TCTRANSLATORN

NETWORK BASED FUNCTIONAL

REPRESENTATION REPRESENTATION

Figure 11. The High-Level Preprocessing Approach

added to the basic diagram of Figure 8, namely, a DML

Translator module and a Schema Translator module. In this

approach the schema translator discussed in the first

approach is used to map the functional schema into an

48



equivalent network schema. Using this equivalent schema,

the user generates CODASYL-DML transactions to access

and/or update the functional database. Using the DML

translator, the CODASYL-DML statements are translated into

equivalent Daplex DML statements. The existing language

interface of the functional model and AB(functional)

database is then used to translate the Daplex DML

statements.

The advantages of this approach are that it takes

maximal advantage of existing tools and techniques, and is

conceptually easy to envision. It also shares the schema

translator needed in the first approach. The disadvantages

are that a DML translator between the network and

functional data models may be difficult to accomplish, and

that serial processing time would have to be added directly

to the existing approaches.

D. CHOOSING THE BEST APPROACH

Having disqualified an AB(functional)-CODASYL schema

translator from further consideration, one of the three

approaches is no longer feasible for the network-functional

data model mapping. This leaves the remaining two

approaches to satisfy our requirements. The direct

language interface approach translates the functional

schema to a CODASYL schema and allows CODASYL-DML commands

to be applied against it. These DML commands are then

translated directly into ABDL commands and executed against

49



the AB(functional) database. The high-level preprocessing

approach translates the schema into CODASYL and accepts

CODASYL DML commands as before, but translates them into

the Daplex commands one would issue if the schema had been

a functional schema. These are then mapped via the

existing MLDS language interface into the appropriate ABDL

commands for execution against the AB(functional) database.

In choosing between these two approaches, we note that

the high-level preprocessing approach may be considered to

be the "classical solution". Besides being similar to what

Computer Corporation of America has done with their

MULTIBASE product [Refs. 16,22], this approach is used in

the Sirius-Delta project run by INRIA in France, which

deals with a distributed database management system [Ref.

23].

Additionally, from an intuitive standpoint, it also

seems that the high-level preprocessing approach is more

time-consuming than the direct language interface approach.

While both have the same schema translation process, the

direct language interface approach involves a direct, one-

step DML translation. The high-level preprocessing

approach, on the ither hand, translates from CODASYL to

Daplex, and then from Daplex to ABDL.

Because the high-level preprocessing approach has

already been treated at least in principal, and because

from an intuitive standpoint it seems to be slower due to a

50



two-step DML translation, the direct language interface

approach seems preferable. We feel that this approach is

also the most compatible with the existing language

interface concept. The direct language interface approach

is therefore our choice as the best approach.

A final point should be made at this time. While the

AB(functional)-CODASYL translation turned out to be

inadvisable, this may not always be the case. In fact, it

may well be the recommended approach for the relational

data model, which closely resembles the AB data model.

This should continue to be an active area of inquiry.

51

*AAP', 
-



IV. TRANSFORMING A FUNCTIONAL SCHEMA
TO A CODASYL SCHEMA

One can see that a central part of the chosen approach

is to present the CODASYL user with a CODASYL

representation of the functional schema. To do this in a

time-and-space-efficient manner, MLDS must be able to

automatically generate a CODASYL schema representing the

current functional schema for the desired database. Such a

schema must--to as great an extent as is possible--

accurately reflect the characteristics of the functional

schema, while preserving its constraints.

4. The conversion of a functional schema to a CODASYL

schema revolves around six main constructs: the entity

type, the entity subtype, non-entity types, the uniqueness

* constraint, the overlap constraint and the set type. The

methodology for dealing with each of the six constructs is

discussed in this chapter. We conclude the chapter with a

detailed example, converting the University database schema

of Figure 3 to an equivalent CODASYL schema.

A. ENTITY TYPES

In this section, we examine the process of transforming

functional entity types into an equivalent structure in

CODASYL. In doing so, we note that there are two main

parts to an entity declaration, namely the entity itself

52

-mI .



and the functions associated with the entity. In order to

properly illustrate the transformation process, Figure 12

functional

TYPE course IS
ENTITY

title STRING (1 .. 10);
deptmt : department;
semester : semester name;
credits : INTEGER;
taughtby : SET OF faculty;

END ENTITY;

UNIQUE title,semester WITHIN course;

*' CODASYL
RECORD NAME IS course;
DUPLICATES ARE NOT ALLOWED FOR title,semester;
title ; CHARACTER 10.
semester ; CHARACTER 6.
credits ; FIXED 1.

SET NAME IS system_course;
OWNER IS system;
MEMBER IS course;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS deptmt;
OWNER IS department;
MEMBER IS course;

INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS taught by;
OWNER IS course;
MEMBER IS linkl;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

Figure 12. The Representation of an Entity
Type in CODASYL

53



depicts a functional entity taken from the University

database schema of Figure 3, and the CODASYL declarations

necessary to represent it. Most of the tansformation

process of the entity type to CODASYL are demonstrated

using this example.

An entity type is declared to be a CODASYL record type.

Additionally, each entity type declared must be the member

of a set type which is owned by SYSTEM. This can be seen

in the first two CODASYL declaration sections.

Mapping the functions associated with an entity type is

a far more complicated process. In the chapter describing

the various data models, we stated that functions that are

defined over entities can be scalar functions, scalar

multi-valued functions, single-valued functions and multi-

valued functions. Each of these four types of functions is

mapped differently, and is described in turn.

It must also be noted that a very important assumption

is made here, namely, that each function name is unique

within a functional schema.

Scalar functions are declared as fields in the previous

record type which represents the entity type. Referring to

Figure 12, the scalar functions in the record type

declaration are "title," "semester" and "credits."

Scalar multi-valued functions could be represented by

storing an array of values in the record. However, since

attribute-based records do not store sets in this manner,

54



this is not the best representation. Rather, it is

necessary to declare the scalar multi-valued function as a

field in the appropriate record type. Since only one

occurrence of the scalar multi-valued function can be

stored in a given record, every occurrence after the first

necessitates the creation of a new record. This new record

is identical in every way to the one before it, with the

single exception of the field in question. Therefore, we

then add this field to any others necessary to uniquely

define the record. These fields are declared in the record

type declaration using

DUPLICATES ARE NOT ALLOWED FOR <field names>

Again, an example of this can be seen in the record type

*declaration in Figure 12. The issue of uniqueness is taken

up in a later section.

Single-valued functions are dealt with in the following

manner. A CODASYL set type is declared, whose name is the

function name. Its owner is the record type declared for

the range entity type, and its member is the record type

declared for the domain entity type. This ensures that a

single owner for the record type is defined in the set

relation. Figure 12 depicts one single-valued function,

* namely, "deptmt."

Multi-valued functions are defined over entities and

return sets of entities. There are two categories of

55

.4



multi-valued functions to consider: One-to-Many

relationships and Many-to-Many relationships.

1. One-to-Many Relationship--if the function' is
determined not to be many-many, declare a set type
with the record type of the domain entity as the
owner, and the record type of the range entity as the
member.

2. Many-to-Many Relationship--occurs if entity A
declares a multi-valued function with entity B as the
range entity type, while entity B declares a multi-
valued function with entity A as the range entity
type. In this case, an extra (link) record type is
defined in addition to the record types for entity A
and entity B. Two set types are declared--one in
which the record type for entity A is the owner and
the link record is the member, and another in which
the record type for entity B is the owner and the
link record is the member.

Referring again to Figure 12, the function "taughtby"

is a multi-valued function. We note that there is no way

to tell simply from the entity type shown that a mirlti-

valued function exists. This is true for any two entities

A and B which have multi-valued functions declared of them.

It can be seen that, while entity type A is being converted

to the appropriate CODASYL representation, entity type B

may or may not have been converted already. However, this

is not a problem. Since the functional schema must first

be declared, we can traverse this schema at will to check

for existing many-to-many relationships. Thus, even if the

appropriate record type has not yet been declared, we can

declare a set type involving it. When entity type B is

converted, the set type declaration has already been in

56



place, so checks need to be made to ensure that set

duplication does not occur.

B. ENTITY SUBTYPES

In this section, we examine the process for

transforming functional entity subtypes into an equivalent

structure in CODASYL. Like the entity type mapping

performed in the previous section, entity subtypes can be

divided into two main parts with respect to the mapping

process, namely, the subtype itself and the functions

associated with the entity subtype. We describe the

mapping process of each in turn.

As before, an entity subtype is declared as a record

type. Additionally, a set type is declared in which the

member is the record type declared for the entity subtype,

and the owner is the record type declared for the "parent"

entity type or subtype. So if A is an entity type, B is an

entity subtype of A and C is an entity subtype of B, we

would have the following partial set declarations:

SET NAME IS AB;
OWNER IS A;
MEMBER IS B;

SET NAME IS B C;
OWNER IS B;
MEMBER IS C;

All functions (scalar, scalar multi-valued, single-

valued and multi-valued) defined on the entity subtype are

57



declared in the same way as have previously been defined

for entity types.

C. NON-ENTITY TYPES

Daplex provides rather extensive facilities for

declaring non-entity types. While data types are declared

within a record as character, integer or floating point in

CODASYL, Daplex has string, integer, floating point and

enumeration data types. Using these as building blocks,

Daplex declares ranges of values, base types, subtypes of

the base types, and derived types which inherit

characteristics of a named type or subtype.

In the conversion process described in the previous

sections, it is necessary to maintain to the greatest

degree possible the integrity constraints set in place by

Daplex non-entity type declarations. Comparing Daplex and

CODASYL data types, we find the following four

transformations:

1. Daplex string maps directly to CODASYL character.

2. Where CODASYL declares an integer and a length,
Daplex declares either integers or integer subranges.
The straightforward solution is to declare an integer
type with the length equivalent to the order of
magnitude of the largest integer allowed in the
subrange. This, of course, allows integer values to
be input which may subsequently violate the Daplex
integrity constraints specified. However, we feel it
is more important to retain existing CODASYL
constructs and operate within them than to make up
new constructs to account for Daplex's richer
dialect.

58



- R - . . | - . . .. -- - . .. . . . .

3. Daplex floating point maps directly to CODASYL
floating point.

4. Daplex allows enumeration types while CODASYL does
not. Since we have elected to maintain the strict
bounds of CODASYL, we must declare the enumeration
type to be CHARACTER, and the length to be that- of
the largest enumeration. This of course permits the
same problems encountered with violating funct,-ra.
integrity constraints as occur with :ece-
declarations.

An important point needs to be made abc - o

types in general. They are provided in Dap.ex

data integrity constraints, so the task of an, ,;

to map the constraint rather than the constr. :.

this goal affords the CODASYL user an oppcr

destroy the integrity of the functional database

A CODASYL user can compromise the database in e-."

only when using DML commands which insert or update data.

Therefore, appropriate data integrity checks need to be

conducted at insert or update time to ensure the leciality

of the transaction. It should be obvious, therefore, that

the generated CODASYL schema cannot maintain data

integrity, but merely indicate the structure of the

functional database to the CODASYL user. In order to

maintain data integrity, some sort of "Integrity Table"

could be created. As an example, the valid enumerations of

COLOR could be stored in this table. Thereafter, if COLOR

is to be inserted or updated, the value for it would have

to be resident in the table. Note that the Integrity Table

would not play a role in retrieve or delete commands, and

59

-

10



so would not need to be invoked there. Thus, the integrity

checks, if desired, must be performed by C code embedded in

the appropriate DML insert and update commands.

D. UNIQUENESS CONSTRAINTS

Daplex represents uniqueness constraints in the

following manner:

UNIQUE XXX,YYY WITHIN ZZZ

XXX and YYY represent one or more functions which, when

taken together, uniquely describe the entity in question of

entity type ZZZ. The uniqueness constraint is easily

mapped to the CODASYL schema. Since uniqueness constraints

are given in Daplex after entity types and subtypes are

declared, their record types have already been declared in

the schema conversion. Therefore, one merely locates

record type ZZZ and inserts the following key declaration.

DUPLICATES ARE NOT ALLOWED FOR XXX YYY;

It should again be noted that the business of creating

a true key is complicated by the attribute-based

representation of the functional database. When scalar

multi-valued functions are declared as fields in a record

type, they must also be declared as part of the key

(although an empty set may cause problems). Therefore, at

a minimum, when desiring to insert the DUPLICATES NOT

ALLOWED clause, the program must check to see if there are

60



some fields with such a clause. In this case, the new

fields are merely added to the existing list.

E. OVERLAP CONSTRAINTS

The Daplex User's Manual states that "an overlap

constraint determines when an entity may legally belong to

more than one terminal subtype within a hierarchy" [Ref.

17]. Overlap constraints are necessary within the

functional database because by definition each subtype is

assumed to be disjoint. An example of this is found in

Figure 13, the PERSON generalization hierarchy for the

University database. FACULTY and UNDERGRADUATE are both

descendants of PERSON. Unless FACULTY and UNDERGRADUATE

are declared to overlap, a person who is an undergraduate

cannot at the same time be a faculty member.

!Person

IEmployee I I St ud en t _J

lSupportStaff Facult Graduate Unde dut

Figure 13. The University Database Person Hierarchy

61



The difficulty in mapping this to the CODASYL schema

rests in the way that entity types and subtypes are

related. UNDERGRADUATE is owned in a set type by STUDENT,

which in turn is owned in a set type by PERSON. FACULTY is

owned by EMPLOYEE, which again is owned by PERSON. One can

see that, unless otherwise restricted, a PERSON record

which has an UNDERGRADUATE descendant could later have

EMPLOYEE and FACULTY records attached to it.

While it is obviously necessary to prohibit

unauthorized overlaps, this capability is not available

within CODASYL-DML. One cannot in effect say that one set

occurrence owned by a record is allowed, but that another

is not. Furthermore, one cannot specify that one set type

occurrence is prohibitted because another exists. We must

therefore find another means of ensuring that the proper

overlap constraints are maintained.

One way to accomplish this while preserving the

generality of set types is by providing an "Overlap Table".

If a given record is the owner of a set (PERSON --->

STUDENT, for example), it may not be permitted to be the

owner of other set occurrences (PERSON --- > EMPLOYEE)

unless either an overlap is declared between each

respective member record type specifically, or an overlap

is declared for a descendant of each member record type.

Referring to Figure 13 again, if FACULTY is overlapped with

GRADUATE, then a PERSON record can own sets of EMPLOYEE and

62



STUDENT, even if neither FACULTY nor GRADUATE are

specified. Again, within EMPLOYEE, the person can be

SUPPORTSTAFF or FACULTY, but not both, due to the overlap

constraint. All this must be represented in the Overlap

Table.

As a summary example, if a record is to be added to the

database, the Overlap Table must first be consulted to

ensure a record can be added to this set. The Integrity

Table may then be checked to ensure that the fields in the

record contain allowable values.

F. SET TYPES

In the following discussion, it is presumed that the

reader is familiar with CODASYL set formats in general. In

particular, prior theses concerning the design and

implementation of a CODASYL interface have defined a

restricted grammar for CODASYL set declarations in MLDS.

Using angle-brackets to designate optional portions of the

declaration, the CODASYL set declaration format used in

MLDS is depicted in Figure 14.

In preceeding sections, we have stated that a set type

must be declared. However, when doing so, the naming of

the set types, insertion and retention rules, and other

details differ, depending on the circumstance. When

declaring set types, the following guidelines are to be

maintained:

63



SET NAME IS AAA;

OWNER IS BBB;

MEMBER IS CCC;

INSERTION IS AUTOMATIC
MANUAL

RETENTION IS FIXED
MANDATORY
OPTIONAL

SET SELECTION IS BY VALUE OF DDD IN. EEE
STRUCTURAL FFF IN GGG
EQ HHH IN III
APPLICATION >

Figure 14. CODASYL Set Declaration Format

1. Except for sets created from single- or multi-valued
functions, the set name is defined as the owner
record type name followed by a "_ ", followed by the
member record type name. Single- and multi-valued
functions are handled as previously described. If
PERSON is the owner and EMPLOYEE is the member, then
the set name declaration is:

SET NAME IS personemployee;

2. Owner and member name declarations correspond to the
respective record type names.

3. Because of the particulars of our proposed schema
conversion, every record type added or modified which
represents an entity type or subtype must belong to a
particular set. Therefore, the insertion clause for
entity types and subtypes is always:

INSERTION IS AUTOMATIC

64



On the other hand, functions for a given entity
type or subtype may or may not be used. This affects
the declaration and maintenance of set types
representing single- and multi-valued functions.
Therefore, their insertion clause is always:

INSERTION IS OPTIONAL

4. Retention of a record within a given set is
complicated by differing rules, depending on the
cause of the set type declaration. To begin with, a
set type for which the owner is SYSTEM never allows
its member records to switch owners. Also, a member
record reflecting an entity subtype always belongs to
the same owner record type. Therefore,. the retention
clause in these cases is

RETENTION IS FIXED

On the other hand, those set types which are set
up to describe the single- and multi-valued
functions may need to have their members deleted,
moved around and reattached at will. In order to do
this, the retention clause must be

RETENTION IS OPTIONAL

5. When a record is inserted into a set, the set must be
the current of set type. Therefore, set selection is
always specified as:

SET SELECTION IS BY APPLICATION;

G. IMPLICATIONS OF THE METHOD CHOSEN FOR
SET-TYPE DECLARATIONS

In the previous section we have discussed the

methodology for declaring set types. To review, there are

two set type declarations: set types which reflect an ISA

65



relationship between two entity types or subtypes, and set

types which represent a Daplex function.

The first case may be considered to be somewhat of a

"standard" set type declaration. By this we mean that a

record which falls into this category either owns or is

owned by another record. Referring to the University

database functional and CODASYL schemata depicted in

Figures 3 and 15 respectively, we see that the

PERSONSTUDENT set type falls into this category. STUDENT

is an entity subtype of PERSON, reflecting an ISA

relationship.

SET NAME IS personstudent;
OWNER IS person;
MEMBER IS student;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 15 PERSONSTUDENT Set Type Declaration

On the other hand, the functional schema indicates

three functions associated with STUDENT, namely

"enrollments", "major" and "advisor". Following the

methodology previously described and by viewing the CODASYL

schema, we see that three set types are declared,

possessing the same names as the Daplex functions. STUDENT

is the owner of ENROLLMENTS, but is the member in the MAJOR

66



and ADVISOR set types. All three set types are of the

category which represent Daplex functions.

It is important at this point to recall that the true

database, as described by the functional schema, is

actually in attribute-based (AB) format. The information

for the ENROLLMENTS, MAJOR and ADVISOR set types is all

stored in fields within the STUDENT record, in AB format.

This is true, even though STUDENT is the owner in one set

type but the member in the other two.

When we cause a CODASYL record to be ei4- an owner or

a member of a set type, we are mer . -efining a static

relationship among existing occurrences of the two record

types. At the AB(functional) level, however, to connect to

a set type in CODASYL is to do one of two things. If the

set type is one in which the record is a member, we are

inputting information into a previously NULL field. On the

other hand, if the set type is one in which the record is

the owner, we are creating an entirely new record every

time a new member is associated with it. Likewise, the

DISCONNECT statement is not just the abrogation of a

relationship between two records as with CODASYL records.

Rather, it either clears a field in the member record, or

deletes an owner record entirely, depending on whether the

function being represented by the set type comes from the

owner or member record. Further discussion on this topic

67

,. Jq



can be found in sections concerning CODASYL-DML

translations for FIND, CONNECT and DISCONNECT.

H. A COMPLETE MAPPING EXAMPLE

This concludes the discussion of the schema conversion

methodology. In order to demonstrate the effect of this

methodology, a sample schema conversion is performed. The

completed conversion of the University database schema,

shown in Figure 3, to an equivalent CODASYL schema is

presented in Figure 16.

'i6

68



SCHEMA NAME IS university;

RECORD NAME IS person;
DUPLICATES ARE NOT ALLOWED FOR ssn;
name ; CHARACTER 25.
ssn : CHARACTER 9.

RECORD NAME IS employee;
DUPLICATES ARE NOT ALLOWED FOR phones;
home address ; CHARACTER 50.
office ; CHARACTER 8.
phones ; CHARACTER 7.
salary ; FLOAT.
dependents ; FIXED 10.

RECORD NAME IS support_staff;
full-time ; CHARACTER 1.

RECORD NAME IS faculty;
rank ; CHARACTER 9.
tenure ; CHARACTER 1.

RECORD NAME IS linkl;

RECORD NAME IS student;

RECORD NAME IS graduate;

RECORD NAME IS undergraduate;
gpa ; FLOAT.
year ; FIXED 1.

RECORD NAME IS course;
DUPLICATES ARE NOT ALLOWED FOR title,semester;
title ; CHARACTER 10.
semester ; CHARACTER 6.
credits ; FIXED 1.

RECORD NAME IS department;
DUPLICATES ARE NOT ALLOWED FOR name;
name ; CHARACTER 20.

RECORD NAME IS enrollment;
grade ; FLOAT.

Figure 16. CODASYL University Database Schema Conversion

69



SET NAME IS system person;
OWNER IS system;
MEMBER IS person;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS person_employee;
OWNER IS person;
MEMBER IS employee;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS supervisor;
OWNER IS emplcee;
MEMBER IS supportstaff;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS employee_supportstaff;
OWNER IS employee;
MEMBER IS supportstaff;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS teaching;
OWNER IS faculty;
MEMBER IS linkl;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS taught-by;
OWNER IS course;
MEMBER IS linkl;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS dept;

OWNER IS department;
MEMBER IS faculty;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

Figure 16. (Continued)

70



SET NAME IS employeefaculty;
OWNER IS employee;
MEMBER IS faculty;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS advisor;
OWNER IS faculty;
MEMBER IS student;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS major;
OWNER IS department;
MEMBER IS student;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS enrollments;
OWNER IS student;
MEMBER IS enrollment;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS personstudent;
OWNER IS person;
MEMBER IS student;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS advisory_committee;
OWNER IS graduate;
MEMBER IS faculty;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS student graduate;
OWNER IS student;
MEMBER IS graduate;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 16. (Continued)

71

1011



SET NAME IS student undergraduate;
OWNER IS student;
MEMBER IS undergraduate;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS deptmt;
OWNER IS department;
MEMBER IS course;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;

SET SELECTION IS BY APPLICATION;
SET NAME IS system-course;
OWNER IS system;
MEMBER IS course;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS head;
OWNER IS faculty;
MEMBER IS department;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS system-department;
OWNER IS system;
MEMBER IS department;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS class;
OWNER IS course;
MEMBER IS enrollment;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS system enrollment;
OWNER IS system;
MEMBER IS enrollment;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 16. (Continued)

72

""OEM&



V. MAPPING CODASYL-DML STATEMENTS TO ABDL REQUESTS

Having detailed a methodology for transforming a

functional schema to a CODASYL schema, we are now ready to

examine the mapping of CODASYL-DML statements into ABDL

requests in order to carry out the desired operations on an

AB(functional) database. As previously mentioned, we

restrict our attention to the subset of CODASYL-DML

statements used in the MLDS network interface, namely:

FIND, GET, STORE, CONNECT, DISCONNECT, ERASE and MODIFY.

In this chapter, we discuss the above statements in

each of their forms, as well as the mapping process

required. We present the discussions in the same manner

and order as was done with the original MLDS network

interface [Ref. 8], so that the similarities and

differences between the two may be highlighted.

When describing CODASYL-DML statements, the following

notation is used: literals are represented in the upper

case, user-supplied variable names are represented in the

lower case, and optional clauses are denoted with square

brackets.

In order to fully explain each DML statement, the

concept of currency is discussed. A description of some of

the data structures which are used in the network language

73



interface and applicable to the CODASYL-functional mapping

process follows.

A. THE NOTION OF CURRENCY

The notion of currency is very fundamental to the

network data model. Currency among records and sets may be

compared to placemarkers in books, showing what page you

were last on in each book. Knowing the current record of a

specific record type is essential to the navigation and

manipulation of the network database.

For each application program running on the system, a

table of currency indicators is maintained. The currency

indicator used is a database key, generated by the database

management system to uniquely identify each record in the

database. The currency indicator table (CIT) identifies

the record most recently accessed by the run unit. This is

done for each record type, each set type, and any other

type. By any other type, we mean that the key for the

record of any type most recently accessed is maintained as

the current of the run unit, the most important of all

currencies.

As an example, suppose we have set type A with record

type B as the owner and record type C as the member.

Suppose further that we are navigating in set type A, and

the last thing that we have done has been to access a

record of record type C, whose database key is D. Then the

current of the run unit, the current of set type A and the

74



current of record type C are all D values. It can be seen

that the current of set type may be either an owner record

or a member record, whichever has been accessed last.

B. DATA STRUCTURES REQUIRED FOR THE MAPPING PROCESS

In order to correctly and efficiently navigate through

the database, as well as manipulate information returned as

the result of data retrieval operations, two data stuctures

are needed, namely, the Currency Indicator Table (CIT), and

the Record Buffer (RB). In this section, each is described

in turn.

1. The Currency Ir.icator Table (CIT)

As is previously mentioned, a currency indicator

table (CIT) is created for each program run using the MLDS

network interface. The table and its contents are

instantiated upon the first call to the database management

system, and are updated continually when navigating in or

manipulating the database.

As can be seen from Figure 17, CIT contains entries

for the current of the run unit, currents of each record

type, and currents of each set type. The information shown

for each is the same as that contained in the MLDS network

interface CIT, and is sufficient for our purposes.

2. The Request Buffer

For many of the CODASYL-DML statements being

translated, a series of ABDL requests may be generated

75



during the mapping process. Some of the requests

necessarily wait for the completion of preceeding requests

CIT
RUNUNIT

record type
databasekey

recordtype(i)
database_key

set type (i)
boolean (is record an owner record)
record type
database_key
memberrecord-type
ownerrecord type
ownerdatabase_key

Figure 17. Information Contained in the CIT

in order to execute. Also, the information returned as the

result of one statement translation is often used in

succeeding statements. This implies the need for some sort

of storage capability to hold information needed for later

requests or accesses.

The request buffer (RB) is used as the storage

medium for information returned by ABDL RETRIEVE requests.

There must be one RB for each RETRIEVE request issued.

Upon successful execution of a RETRIEVE request, all of the

records satisfying the request are maintained in RB.

Subsequent requests may then access this information during

their execution. RB plays a central role in the mapping

76



process described in later sections, and will be described

in greater detail therein.

C. MAPPING THE FIND STATEMENTS TO ABDL RETRIEVES

The format of the CODASYL FIND statement is

FIND recordselection expression [ ]

while the format of the ABDL RETRIEVE request is

RETRIEVE Query Target-list [by Attributes]

There are a number of formats for the FIND statement

implemented in MLDS, and each of these is examined in turn.

1. The FIND ANY Statement

The FIND ANY statement syntax is as follows:

FIND ANY record typel USING iteml,...,itemn IN record typel

The purpose of this statement is to locate any record of

type record_typel whose values for iteml through itemn

match the values placed in the record's template in the

user work area (UWA).

To map this statement, the word RETRIEVE is

substituted for FIND ANY. A query is then formed whose

first predicate is (FILE=recordtypel). The other

predicates in the query are found in UWA, in the form of

attribute names with values assigned to them. Since this

is a RETRIEVE request, RB is needed to store the

information retrieved after request execution.

77



Having formed the query, the target list is

created, which consists of all of the attributes of the

requested record. In summary, the translated CODASYL-DML

statement is:

RETRIEVE ((FILE = recordtypel) AND
(iteml = value1) AND

AND
(itemn = valuen))
(all attributes) [BY record_typel]

We note that part of the mapping process from the

functional database to the AB(functional) database is that

the database key is called by the same name as the record

.itself. Thus, the optional "BY record-typel" clause is the

ordering of the records retrieved by the database key. An

example using the University database demonstrates the

process of the mapping. The requirement is to find any

EMPLOYEE record whose office is 'SP401'. The CODASYL-DML

procedure is

MOVE 'SP401' TO OFFICE IN EMPLOYEE
FIND ANY EMPLOYEE USING OFFICE IN EMPLOYEE

It should be noted that the MOVE statement is an

assignment statement found in the host COBOL language.

Using the procedure previously described, KMS does the

following:

Step 1. 'SP401' is placed in the EMPLOYEE template of
the UWA for the attribute OFFICE.

78

- .V



Step 2. A RETRIEVE request is formed which looks
like

RETRIEVE ((FILE-EMPLOYEE) and
(OFFICE='SP401'))
(OFFICE,PHONE,SALARY,DEPENDENTS)
BY EMPLOYEE

Step 3. KMS passes the request to KC for execution.

The result of the above steps is that all EMPLOYEE records

satisfying the search criteria are placed in RB, sorted by

the database key. Figure 18 shows the contents of RB after

the retrieve is executed. When the GET statement is

issued, the first record in RB is returned.

2. The FIND CURRENT Statement

The FIND CURRENT statement syntax is as follows:

FIND CURRENT recordtypel WITHIN set typel

The FIND CURRENT statement requires no ABDL statements to

be generated. The purpose of the statement is to update

the current of the run unit with the value resident in the

current of settypel. In other words,

------------------------------

n <SP401,6460004,44000,2> I
I <SP401,6460049,39000,2> I
I <SP401,6460061,43000,3> I
------------------------------ 1

Figure 18. Contents of RB After RETRIEVE

79

'-S



CIT.RUNUNIT.type < ---- record_typel
CIT.RUNUNIT.dbkey < ---- (dbkey of current

of settypel)

This statement is useful when we wish to start a search at

the current of settypel, which requires that the current

of the run unit be changed to agree with it.
p3. The FIND DUPLICATE WITHIN Statment

.The FIND DUPLICATE WITHIN statement

is as follows:

FIND DUPLICATE WITHIN settypel USING
iteml,...,itemn IN recordtypel

The FIND DUPLICATE WITHIN statement is used for accessing

records within a particular set occurrence. It locates the

first record typel within the current settypel occurrence

whose values for iteml through itemn match those of the

current of settypel.

An implicit assumption is that the records being

requested are already resident in RB. By the nature of

FIND DUPLICATE WITHIN, another FIND must have already been

issued. Therefore, no RETRIEVE request is issued.

Instead, given the record type, set type and data item
.9

name(s) specified in the statement, KC locates the RB

containing the set. Each record within RB is compared in

turn with the values associated with the data items until

the first duplicate is found. This record is made

* C80



available to the user, and CIT is updated to reflect the

new currency status.

4. The FIND FIRST Statement

The FIND FIRST statement syntax is as follows:

FIND FIRST record_typel WITHIN settypel

The FIND FIRST statement locates the first member record of

a set occurrence. This statement has several other forms:

FIND LAST, FIND NEXT, and FIND PRIOR. Since we map them

all in the same manner, we only describe the mapping

process for the FIND FIRST.

Upon encountering the FIND FIRST, KMS must ensure

that recordtypel is a member record type of settypel.

Assuming this to be true, KMS forms a RETRIEVE request that

retrieves every member of the current set typel occurrence

into its RB. Once this is accomplished, the first record

in the RB may be returned in the case of the FIND FIRST, or

the last record in the case of FIND LAST.

For FIND NEXT and FIND PRIOR, it must be assumed

that the set occurrence has previously been retrieved into

RB. Therefore, the interface simply locates the current of

set typel and returns the record after it for FIND NEXT, or

the record before it for FIND PRIOR. Since all records for

a set occurrence are already in RB, there is no need for

additional RETRIEVEs.

81



There are several ways in which all members of a

given set occurrence are obtained. The choice of which to

use is dictated by the particular situation. In a previous

section, discussing the implications of the method of set

type declaration chosen, we have stated that there are two

kinds of set types: those which reflect an ISA

relationship, and those which represent a Daplex function.

The methods for finding the set occurrence members are

dependent on the kind of set type declared, and are

described as follows.

(<file, PERSON>, <person,7>,<name, 'Allan Jones'>,
<ssn, 000000007>)

(<file,STUDENT>,<student,7>,<advisor,5>,
<major, l>,<enrollments,3>)

(<file,STUDENT>,<student,7>,<advisor,5>,
<major,l>,<enrollments,4>)

(<file,STUDENT>,<student,7>,<advisor,5>,
<major,1>, <enrollments,5>)

Figure 19. PERSON and STUDENT Records
for 'Allan Jones'

As previously mentioned, when defining the formats

for set type declarations, set types reflecting an ISA

relationship have names which consist of the name of the

owner record type, followed by " " followed by the name of

the member record type. If the set type reflects an ISA

relationship, then the primary keys for both owner and

82

J-. W .~,%



member record types are identical at the AB(functional)

level. This primary key similarity is depicted in Figure

19, which shows PERSON and STUDENT AB records for 'Allan

Jones'. As seen in the PERSON hierarchy of Figure 13,

STUDENT has an ISA relationship with person, as reflected

in the CODASYL set type declaration, PERSONSTUDENT. Here,

we see that in file PERSON, the database key value is 7

(person = 7), while in file STUDENT, the database key value

is again 7 (student = 7). Thus, the ABDL request being

formed in this case takes advantage of this and the name

overloading previously mentioned, and consists of the

following RETRIEVE request:

RETRIEVE ((FILE=recordtypel) AND
(record typel=CIT.settypel.owner databasekey))
(all attributes) [BY recordtypel]

Due to the intentional name-overloading approach

taken, set types which represent a Daplex function have the

same name as the Daplex function. If the set type

represents a Daplex function, then there are again two

possibilities; the function belongs to the owner record

type, or the function belongs to the member record type.

Since the functional schema remains available for use, we

can traverse it to determine which record type the function

belongs to.

If the set type represents a Daplex function which

belongs to the owner record type, then we make use of the

83



database key for the owner record. This is again

reflected in the STUDENT records of Figure 19. STUDENT is

the owner of the "enrollments" function. We therefore

perform a retrieve for all STUDENT records with

(student=7). This gives us the database keys of the

ENROLLMENT records we need. We then generate one or more

RETRIEVE requests--one for each database key returned. If

we know that we are in this kind of set type, the ABDL

requests formed are:

RETRIEVE ((FILE=CIT.owner record-type) AND
(CIT.owner record type=

CIT.settypel.ownerdatabase_key))
(settypel) (BY CIT.owner record_type

RETRIEVE ((FILE=record_typel) AND
(record typel= (each dbkey returned

in previous RETRIEVE)))
(all attributes) (BY record typel]

Finally, if the set type represents a Daplex

func ion belonging to the member record type, then we are

dealing with a set type which by definition has only one

member--the member record occurrence that we are seekinq.

In this case, we need to find a member record such that its

attribute (whose name corresponds to the set type name) has

a value equal to the owner record's database key.

Therefore, the ABDL request corresponding to this case is

as follows:

84



RETRIEVE ((FILE=record_typel) AND
(settypel=CIT.settypel.owner databasekey))
(all attributes) [BY recordtypel]

It can be seen that we are overloading the set-type

and record-type names using these methods. For Daplex

functions, the set-type name is the same as the appropriate

AB(functional) attribute name. In both cases, the database

key-field name is the same as the record-type name. It is

this name overloading which allows us to systematically and

efficiently translate and process the preceeding CODASYL-

DML statements.

As an example, let us consider the following

request: Find all the grades associated with enrollments

by 'Allan Jones'. A possible CODASYL procedure to

accomplish this would be:

MOVE 'Allan Jones' TO NAME IN PERSON
FIND ANY PERSON USING NAME IN PERSON
FIND FIRST STUDENT WITHIN PERSONSTUDENT
MOVE 'NO' TO EOF
FIND FIRST ENROLLMENT WITHIN ENROLLMENTS
PERFORM UNTIL EOF = 'YES'

GET ENROLLMENT
(add grade in ENROLLMENT to result list)
FIND NEXT ENROLLMENT WITHIN ENROLLMENTS

ENDPERFORM

The series of FINDs are necessary to navigate

through the CODASYL database representation from a known

point (i.e., name='Allan Jones') to the appropriate

ENROLLMENT record(s). Once the correct PERSON record is

found with the FIND ANY statement, we encounter the first

85



FIND FIRST statement. By the process previously described,

we determine that PERSONSTUDENT is a set type reflecting

an ISA relationship. The ABDL request generated- for it is

therefore:

RETRIEVE ((FILE-STUDENT) AND
(STUDENT=CIT. PERSONSTUDENT. owner database

key))
(STUDENT, ADVISOR, MAJOR, ENROLLMENTS)
BY STUDENT

The RETRIEVE request returns all records satisfying the

above criteria to RB, from which the first record is

selected and returned.

The second FIND FIRST statement refers to a set

type representing a Daplex function. Checking the

functional schema, we find that the function belongs to the

owner record type, or STUDENT. Therefore, the series of

ABDL requests issued is as follows:

RETRIEVE ((FILE=STUDENT) AND
(STUDENT=CIT. ENROLLMENTS. ownerdatabasekey))
(ENROLLMENTS)
BY STUDENT

(If one or more records are retrieved and residentin
RB, the second ABDL request is generated).

RETRIEVE ((FILE=ENROLLMENT) AND
(ENROLLMENT= (each "enrollments" database

key from the previous
RETRIEVE)))

(ENROLLMENT, CLASS, GRADE)
BY ENROLLMENT

86

... ....



If one or more records are returned from the first RETRIEVE

request, then an equivalent number of the second RETRIEVE

requests is generated, one for each record returned in the

first RETRIEVE. All records returned are placed in the

appropriate RB, from which the first record is selected.

The PERFORM loop is required because in CODASYL

only one record at a time is made available to the user.

Within the PERFORM loop, the information needed is taken

from the current of ENROLLMENTS. A FIND NEXT statement is

then issued. In the RB containing the records satisfying

the RETRIEVE requests, the record following the current of

ENROLLMENTS is selected and is processed in the next

iteration of the PERFORM loop. When the last record has

been processed, the EOF flag is changed to 'YES,' and the

procedure is concluded.

5. The FIND OWNER Statement

The syntax of the FIND OWNER statement is as

follows:

FIND OWNER WITHIN set_typel

The mapping of this statement is straightforward, since all

information necessary is already resident within CIT. KMS

examines the CIT entry for set typel and extracts the

database key and record type of the owner from it. With

this information, the following RETRIEVE request is formed:

87

-. -



RETRIEVE ((FILE-CIT.settypel.owner record type) AND
(CIT.settypel.ownerrecord type -

CIT.set typel.ownerdatabase key))
(all attributes)

6. The FIND WITHIN CURRENT Statement

The syntax of the FIND WITHIN CURRENT statement is

as follows:

FIND record typel WITHIN settypel CURRENT
USING iteml, ... ,itemn IN record typel

The FIND WITHIN CURRENT statement is very similar to the

FIND DUPLICATE statement. The difference is that where

FIND DUPLICATE uses values resident in the current of set

type, FIND WITHIN CURRENT uses values resident in UWA. KMS

ensures that the record type specified is a member record

type of the set type, and that each data item specified is

defined for the record type. The request generated is as

follows:

RETRIEVE ((FILE-recordtypel) AND
(recordtypel=CIT.settypel.owner

database key)
AND (iteml-uservaluel)
AND.
AND (itemn-uservaluen)
(all attributes) (BY recordtypel]

D. MAPPING THE CODASYL GET STATEMENTS

The GET statements used in CODASYL-DML are data

retrieval statements, just as FIND statements are, except

that only records previously retrieved by FIND statements

can be accessed by GET statements. While FIND statements

88



bring records into the appropriate RB and update applicable

CIT entries, they cannot actually access the records for

the purpose of displays or printouts. This is the purpose

of the GET statements.

As was done in the network interface, we issue

instructions to KC for handling GET statements instead of

mapping them to ABDL RETRIEVEs. There are three options in

connection with the GET statement, and each is discussed in

turn.

1. The GET and GET record-type Statements

In the absence of further specifications, the GET

statement places the entire current of the run unit record

into UWA for further access by the user. To do this, KMS

informs KC that the record in RB containing the current of

the run unit is to be passed to the user. In this case, it

doesn't matter what the type of the current of the run unit

is.

The GET record-type option is identical to the GET

option except that it specifies a record type. The record

type being accessed must firstbe in the current of the run

unit RB before this option can be executed. KMS therefore

checks the record type in the current of the run unit RB

before proceeding further. In this case, again, all data

items are returned to the user.

89



2. The GET iteml,...,itemn Statement

The difference between this option and the other

GET options is- that the user specifies the data items of

the record which are to be returned. The syntax of this

GET statement is:

GET iteml,...,itemn IN record typel

As before with the GET recordtype option, the

desired record type must be resident in RB containing the

current of the run unit. KMS therefore checks to ensure

that the record type is correct in RB, and also that the

data items listed match the data items in the record type

specified. Once this is done, KMS issues instructions to

KC. Specific data items are returned from the records

accessed.

E. MAPPING THE DATA UPDATING STATEMENTS

In this section, we consider the statements which

perform data-updating operations, namely, CONNECT,

DISCONNECT, MODIFY, STORE and ERASE. In several cases,

mapping these statements in such a way as to achieve the

desired effect on an AB(functional) database is a complex

and involved process. When we consider what it is we are

actually doing to the AB(functional) database upon

execution of several of these statements, we find that we

must go to great lengths to preserve the integrity of the

AB(functional) database. The effects of such statements

9O



upon the AB(functional) database are discussed, in turn, in

the section describing that statement's mapping process.

1. The CONNECT Statement

The syntax of the CONNECT statement is as follows:

CONNECT recordtypel TO settypel,...,settypen

The CONNECT statement is used for manual insertion of the

current of run unit into the current occurrences of the set

types specified. As such, the current of the run unit must

be the member record type of each set type specified.

Furthermore, its insertion clause must be:

INSERTION IS MANUAL

In order to provide a clear illustration of the various

ways by which the CONNECT statement can affect the

AB(functional) database, Figure 20 depicts a functional

entity subtype declaration, occurrences of its

AB(functional) records, and the CODASYL schema declarations

associated with it. Although similar to the University

database schema, we have contrived this example to

demonstrate the steps which could be taken when mapping the

CONNECT statement, as well as others encountered later in

this section.

The CONNECT statement has a profound effect on the

AB(functional) database and its integrity. Because of the

method by which we have declared set types when we

91



functional

SUBTYPE student IS person
ENTITY

major :department;
enrolled : SET OF enrollment;
phone# : SET OF string;

END ENTITY;

AB (functional)

(<FILE, student>, <student, 7>, <major, 1>, <enrolled, 3>,
<phone#,2 174>)

(<FILE, student>, <student, 7>, <major, 1>, <enrolled, 3>,
<phohe#, 2175>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,3>,
<phone#,24 69>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,4>,
<phone#, 2174>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,4>,
<phone#,2 175>)

(<FILE,student>,<student,7>,,<major,>,<eirolled,4>,
<phone#, 2469>)

(<FILE, student>, <student, 7>, <maj or, 1>, <enrolled, 5>,
<phone#, 2174>)

(<FILE,student>,<student,7>,<major,l>,<enrolled,5>,
<phone#, 2175>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,5> ,
<phone#, 2469>)

Figure 20. A Functional/AB(furxctional)/
CODASYL Mapping Example

92



CODASYL

RECORD NAME IS student
phone# : CHARACTER 4;

SET NAME IS personstudent
OWNER IS person;
MEMBER IS student;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS major;
OWNER IS department;
MEMBER IS student;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS enrolled;
OWNER IS student;
MEMBER IS enrollment;
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

Figure 20. (Continued)

93



establish a connection between a member record and an owner

record in CODASYL, we are, in actuality, inserting

information into an existing AB(functional) record,

creating a new AB(functional) record, or even a new set of

AB(functional) records, depending on the circumstances. In

each of these cases, new information is placed into the

AB(functional) database as a result of the CONNECT

statement.

As before, set types can be divided into two

general categories: those representing ISA relationships,

and those representing Daplex functions. The set types

representing Daplex functions can be further divided into

two categories: those where the information concerning the

function is stored in the owner record, and those where the

information concerning the function is stored in the member

record.

Set types representing ISA relationships and

declared with AUTOMATIC insertion clauses cannot be used in

a CONNECT statement. On the other hand, set types

representing Daplex functions declared with MANUAL

insertion clauses are available for use in a CONNECT

statement.

Before we discuss the mapping of the CONNECT

statement into appropriate ABDL requests, we must first

consider what the current of run unit and the owner of a

set occurrence actually represent. To do this, let us

94

* ' , C -L -. .. 7 " "



review a portion of the functional-AB(functional) database

mapping process. In a functional entity type or subtype we

may encounter a scalar multi-valued function. Referring toII Figure 20 again, the "phone#" function is a scalar multi-

valued function. By definition, each of the values

associated with an occurrence of the scalar multi-valued

function belong to the same entity type or subtype
,.%

occurrence. When we represent this entity type or subtype

occurrence in the AB(functional) database, we actually have

one or more record occurrences, one for each of the scalar

multi-valued function values. In every one of these

records, each attribute-value pair is identical to the

corresponding attribute-value pairs in the other records,

with the exception of the attribute representing the scalar

multi-valued function. In Figure 20, we see this reflected

in the AB(functional) record occurrences. So when we wish

to deal with an entity type or subtype which contains a

scalar multi-valued function, we may, in actuality, be

dealing with a set of AB(functional) records.

When we map the Daplex schema into an equivalent

CODASYL schema, the scalar multi-valued function becomes a

field in the record type representing the entity type or

subtype. As a result, when we have a current of the run

unit or an owner of the set occurrence which contains a

field representing a scalar multi-valued function, we are

again dealing with a set of AB(functional) records, and we

V 95



AD-A174 122 ACCESSING AND UPDATING FUNCTIONAL DATABASES USING 2/2
CODASYL-DML(U) NAVAL POSTGRADUATE SCHOOL KONTEREY CA
B D RODECK JUN 86

UNCLASSIFIED F/G 9/2 ULIIIIIIIMIIII
EEIIEEEEIIEEEE
Eu.'..

MMMMMMMMMMMIr



2.2
136 W-

IIII[25 .4 jJj1.

6CROCOPY RESOLUTION TEST CHART
NATWINAl PlIRFAUI OF STANDARDS 1*3-A

MEEHAN='



update them as a whole when executing the CONNECT

statement.

When we wish to connect a member record in the

current of the run unit to a set type, precisely where the

information concerning the set type is stored in the

functional schema determines what actions are taken with

respect to the AB(functional) record(s). Basically, the

information concerning the set type is stored either in the

owner or member record type of-the set type. We discuss

each possibility in turn.

a. Information Resides in Owner Record

When the information concerning the Daplex

function, represented by the CODASYL set type, resides in

the owner record of the set type, the functional schema

indicates that the function points to a set of entity type

or subtype occurrences. This functional set can be null,

or it can contain one or more members in it. If the

functional set is null, then the CODASYL set type

occurrence for it has no member records associated with it

yet. Referring to Figure 20, this might correspond to the

case where "enrolled" is a null set. In this case, the

AB(functional) record occurrence shown in Figure 20 would

be reduced to that depicted by Figure 21. Note that there

are still three AB(functional) records remaining, due to

the scalar multi-valued function "phone#." If there is no

96



(<FILE,student>,<student,7>,<major,l>,<enrolled,NULL>,
<phone#,2174>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,NULL>,
<phone#,2175>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,NULL>,
<phone#,2469>)

Figure 21. AB(functional) Occurrence for NULL
Enrolled Function

scalar multi-valued function, there is only one

AB(functional) record.

With the discussion in the previous paragraph

in mind, we see that there are actually four possible

courses of action to be taken when the information resides

in the owner record of the set type, depending on whether

the functional set Es null or not, and again on whether

there is one or more scalar multi-valued functions

associated with the entity type or subtype. We describe

each possible course of action in turn.

(1) Null Functional Set--No Scalar Multi-

Valued Function. If the functional set is null and there

are no scalar multi-valued functions associated with the

entity type or subtype, then the AB(functional) record

corresponding to the owner of the set-type occurrence is

indeed the only record to be updated. In this case, we

replace the null value for the attribute whose name

corresponds to the CODASYL set type name with the database

97



key of the current of the run unit. Thus, the ABDL request

formed in this case is:

UPDATE ((FILE=CIT.settypel.ownerrecordtype) AND
(CIT.settypel.owner recordtype=

CIT.set typel.ownerdatabase key))
(set typel=CIT. RUNUNIT. databasekey)

(2) Null Functional Set--Scalar Multi-Valued

Function. If the functional set is null and there is a

scalar multi-valued function associated with the entity

type or subtype, we must update the null value in each

AB(functional) record created for the scalar multi-valued

function. Therefore, we must retrieve all applicable

records using information stored in CIT. Unfortunately,

the database key of the owner of the set-type occurrence is

not enough information to perform the RETRIEVE request. We

need to know the names of all the attributes which do not

represent scalar multi-valued functions, as well as the

values associated with them for the owner of the set-type

occurrence. Once we have this information, we use it to

form an UPDATE request which replaces the null values in

the attribute whose name corresponds to the set-type name

with the database key of the current of the run unit. To

obtain this information means the creation of a procedure

written in the host programming language, and as such is

not discussed further herein. Assuming we can obtain this

information, the ABDL requests required are as follows:

98



RETRIEVE ((FILE=CIT.settypel.ownerrecord-type) AND
(CIT.set_typel.ownerrecord type=

CIT.settypel.ownerdatabasekey))
(all attributes)

(We now utilize the aforementioned procedure to
determine which values are of interest to us in the
RB holding the results of the RETRIEVE request, and
extracting the values we need)

UPDATE ((FILE=CIT.settypel.owner recordtype) AND
(CIT. settypel . ownerrecordtype=

CIT.set typel.ownerdatabase_key)
AND (attributel=valuel)
AND...
AND (attributen-valuen))
(settypel=CIT.RUNUNIT.database_key)

As previously mentioned, the attributes and values in the

UPDATE request are found using the host programming

language procedure.

(3) Non-Null Functional Set--No Scalar Multi-

Valued Function. If the functional set is not null and

there is no scalar multi-valued function associated with

the entity type or subtype, then we must create another

AB(functional) record whose attributes and values are

identical to the owner of the set-type occurrence, with the

exception of the attribute whose name corresponds to the

set-type name. This attribute gets the value of the

database key of the current of the run unit. Again, we

retrieve the record which is the owner of the set-type

occurrence, and extract all attributes and values for use

in an INSERT request. We can use the aforementioned host

language procedure to accomplish this. Assuming the

99



existence of this procedure, the ABDL requests required are

as follows:

RETRIEVE ((FILE=CIT.settypel.ownerrecordtype) AND
(CIT.settypel.ownerrecord-type=

CIT.settypel.ownerdatabasekey))
(all attributes)

(We utilize the host language procedure, obtaining each
attribute and value from the record returned above)

INSERT (<FILE,CIT.settypel.owner record type>,
<CIT.settypel.ownerrecordtype,

CIT.settypel.ownerdatabasekey>,
<data itemi,valuei>,
<set typel, CIT. RUNUNIT. database key>)

(4) Non-Null Functional Set--Scalar Multi-

Valued Function. Finally, if the functional set is not

null but-there is a scalar multi-valued ftnction associated

with the entity type or set type, we must make a copy of

every record representing this scalar multi-valued function

and possessing the database key of the owner of the set

type occurrence. However, the attribute whose name

corresponds to the set type name gets the value of the

database key of the current of run unit.

To do this, we must retrieve the

AB(functional) record which is the owner of the set-type

occurrence. Having done this, we use our host language

procedure to obtain all non-scalar multi-valued function

attributes and their values. These in turn are used to

4retrieve every AB(functional) record with these values,

100



thereby capturing all records representing the scalar

multi-valued function. Finally, for each record in RB from

the last RETRIEVE, we insert a new record whose values are

the same as the one in RB, with the exception of the

attribute whose name corresponds to the set-type name.

This value becomes the database key of the current of the

run unit. The ABDL requests required are as follows:

RETRIEVE ((FILE=CIT.settypel.owner recordtype) AND
(CIT.set_typel.ownerrecordtype=

CIT.set_typel.ownerdatabase-key))
(all attributes)

(We utilize the host language procedure, obtaining each
non-scalar multi-valued function attribute and value
from the record returned above)

RETRIEVE ((FILE=CIT.set typel.owner record type) AND
(CIT.set typel.owner record type=

CIT.set_typel.owner database-key)
AND (attributel--valuel)AND
AND (attributen--valuen))

(all attributes)

(For each record in the RB required for the above
RETRIEVE, the following INSERT request is generated)

INSERT (<FILE,CIT.settypel.owner _record_type>,
<CIT.set-typel.ownerrecord type,

CIT.set-typel.owner database_key>,
<data itemi,valuei>,
<settypel,CIT.RUNUNIT.database key>)

This concludes the discussion on the

possible actions to be taken when the information

concerning the Daplex function, represented by the CODASYL

set type, resides in the owner record of the set type.

101



b. Information Resides in Member Record

When the current of the run unit is the record

whose AB(functional) record needs updating, we are dealing

with the set-type which has only one CODASYL member record.

In terms of AB(functional) records, this translates to all

the records with the same database key. Therefore, the

issue of whether or nt a scalar multi-valued function

exists in the record is unimportant. Instead, we simply

update all records whose database key is equivalent to the

database key of the current of the run unit. The update is

to the attribute whose name corresponds to the name of the

set type. This attribute value becomes the database key of

the owner record of the set type. The ABDL request

necessary is as follows:

UPDATE ((FILE=record-typel) AND
(record_typel=CIT.RUNUNIT.database_key))

p. (set typel=CIT.set typel.owner database_key)

2. The DISCONNECT Statement

The syntax for the DISCONNECT statement is as

follows:

DISCONNECT recordtypel FROM set typel,...,set typen

The DISCONNECT statement requires the current of the run

unit to be a member type of the set type(s) listed, and

that the record be removed from the set occurrences that

are current.

102

4..



As is discussed in the section on the CONNECT

statement, when we wish to add certain types of information

to existing records, we connect its CODASYL representation

to a set type occurrence. The effect of the CONNECT

statement is to add a value to an attribute, or to add an

entire AB(functional) record, or even to add a set of

AB(functional) records.

Similarly, when we wish to remove information from

the AB(functional) database, one way to do it is with the

DISCONNECT statement. The DISCONNECT statement is

basically the opposite of the CONNECT statement, and causes

the current of the run unit to be disconnected from the

set(s) listed.

The result of the DISCONNECT statement may be that

a certain attribute value is nulled out, or that an

AB(functional) record is deleted from the database, or that

an entire set of AB(functional) records are deleted from

the database. The circumstances under which each

possibility occurs depends again on whether the function

information is contained in the owner or member record.

Each of these cases is discussed in turn.

When the information concerning the Daplex

function, as represented by the CODASYL set type, resides

in the owner record, the functional schema again indicates

that the function points to a set of entity type or subtype

occurrences. This function set is either a singleton or

103



contains two or more members. Figure 22 depicts a

singleton with a scalar multi-valued function, since there

is only one value for "enrolled". Figure 20 shows three

members in the "enrolled" function set, even though there

are actually nine AB(functional) records due to the scalar

multi-valued function "phone#."

(<FILE,student>,<student,7>,<major, l>,<enrolled,3>,
<phone#,2174>)

(<FILE,student>,<student,7>,<major, l>,<enrolled,3>,
<phone#,2175>)

(<FILE,student>,<student,7>,<major, l>,<enrolled, 3>,
<phone#,2469>)

Figure 22. Singleton AB(functional) "Enrolled"
Function Set

When mapping the DISCONNECT statement to

appropriate ABDL requests, it turns out that the most

important factor is whether the function set is a

singleton, or whether it has two or more members. If the

function set is a singleton as shown in Figure 22, we

merely null out the value of the attribute whose name

corresponds to the set type name. The ABDL request

required in this case is as follows:

UPDATE ((FILE=CIT.set_typel.owner record_type) AND
(CIT.settypel.owner record type=

CIT.settypel.owner-database_key)
(settypel=NULL)

104



One can see that, in the case of a scalar multi-

valued function as shown in Figure 22, all applicable

AB(functional) records are updated by the above ABDL

request. The combination of the database key and the

function value in the request is sufficient to specify the

correct AB(functional) records.

If the function set has two or more members as in

Figure 20, we delete all the records with the correct

combination of the database key and the function value.

The ABDL request for this is as follows:

DELETE ((FILE=CIT.set_typel.ownerrecord-type) AND
(CIT.set-typel.owner recordtype=

CIT.set-typel.ownerdatabase_key)
AND (settypel=CIT.RUNUNIT.databasekey))

Again, if a scalar multi-valued function is part of the

owner record type, all the appropriate AB(functional)

records are deleted in the above DELETE request.

We have seen that it is necessary to determine if

the function set contains two or more records or not, in

order to know whether to issue an UPDATE or DELETE ABDL

request. This must be accomplished by a host programming

language procedure, and once again this is assumed to be

available.

When the current of the run unit is the record

whose AB(functional) record needs updating, we are, by

definition of the schema translation process, dealing with

a singleton function set. Even though there may be many

105

{ :..., .-.. ': ,. - .' -,. ,' -. .: .' , .'.' ''.;'. . v.'.. ." -" .. " ' .' -. .X.- -



records in the AB(functional) database with the same

database key, all these contain the same value for the

attribute whose name corresponds to the set-type name.

Therefore, we merely need to null out the value of this

attribute. The ABDL request necessary to do this is as

follows:

UPDATE ((FILE=recordtypel) AND
(record typel=CIT.RUNUNIT.databasekey) AND
(settypel=CIT.set_typel.ownerdatabasekey))
(set typel=NULL)

A final note should be made at this time concerning

the CONNECT and DISCONNECT statements. These two

statements constitute the means by which certain values in

the AB(functional) database are modified. To modify

attributes representing functions, we must first disconnect

them, thus replacing the previous value with NULL. We may

then reconnect them to another set type occurrence owner,

which is the equivalent of replacing the AB(functional)

NULL value with a new database key. Unfortunately, no

other method is available in CODASYL to accomplish this.

3. The MODIFY Statement

The syntax of the MODIFY statement is as follows:

MODIFY record typel , or

MODIFY iteml,...,itemn IN recordtypel

106



The MODIFY statement causes the entire current of the run

unit to be modified, or only certain specified data items

in it. This is reflected in the two optional syntaxes

shown above. The information used to modify the current of

the run unit is specified in the UWA of this record.

In essence, we have already used the mapping of

this statement extensively in the CONNECT and DISCONNECT

statements. That is, we have found it necessary to perform

UPDATEs on the AB(functional) database. This is exactly

what is done to the current of the run unit in this case.

KMS retrieves the values for the specified data items from

the UWA, and uses them to form the following UPDATE

request(s), one for each data item specified in UWA.

UPDATE ((FILE=recordtypel) AND
(record_typel=CIT.RUN UNIT.databasekey))
(data itemi = user valuei)

So, if two fields in the recordtype were to be

modified, two UPDATE requests would be generated. Of

course, for the MODIFY option which changes the entire

*record, KMS would have to generate an UPDATE request for

each field within the record type.

4. The STORE Statement

The syntax of the STORE statement is as follows:

STORE recordtypel

107

q r



The STORE statement is used to insert a new record into the

database. The field values of the record are constructed

in the UWA before the STORE statement is called. The STORE

statement is also used to place the new record into certain

set-type occurrences of which it is a member.

In a previous thesis concerning the MLDS network

interface, three' set selection options were specified and

dealt with, namely, BY APPLICATION, BY STRUCTURAL and

BY VALUE [Ref. 8]. Because of the method by which we

performed the schema mapping, only the BY APPLICATION

method of set selection is used. Also, the STORE statement

places records only into the set types whose insertion

clause is AUTOMATIC.

In addition to the set selection and insertion

requirements above, the interface must determine if any of

the fields being inserted has a DUPLICATES NOT ALLOWED

clause associated with it. If one or more fields cannot

have duplicates, a RETRIEVE request must be formed to see

if the specific combination of these fields already exists

in the AB(functional) database. As a result, we see that

an INSERT request and possibly a RETRIEVE request must be

generated for each STORE statement. The RETRIEVE request

is generated to determine the status of duplicates, and the

INSERT request is to store the record if no duplicate

exists.

108



For each attribute in the record to be inserted,

whose name corresponds to a set-type name, -we must check to

see if the set-type insertion clause is AUTOMATIC. If it

is, then the value of this attribute becomes the database

key of the owner of the set-type occurrence.

Of great importance to the integrity of the

database is the proper handling of overlap constraints. As

previously discussed, an Overlap Table must be provided

that keeps track of the set types which may coexist with

others. This Overlap Table prohibits set occurrences whose

owner is the owner of another set type, which is considered

to be disjoint from the first. On the other hand, set

types may be defined where the information is stored in the

member type, as when mapping single-valued functions.

These set types may be allowed to coexist with the other

sets owned by the record we are trying to add to the

database. The Overlap Table must include the necessary

information to maintain the integrity of the AB(functional)

database.

Since the information contained in the Overlap

Table cannot be accessed by ABDL requests, a procedure

written in the host programming language must be written

for this purpose. In this thesis, we assume the existence

of such a procedure.

In summary, the process of mapping the STORE

statement to appropriate ABDL requests is as follows:

109



(If any fields are designated as DUPLICATES NOT
ALLOWED, KMS forms the following RETRIEVE request.
Values for the appropriate fields are found in the UWA
record template)

RETRIEVE ((FILE=record-typel) AND
(data itemsi - user valuesi))
(recordtypel)

(If anydatabase keys are returned, an errormessageis
issued.If not,using the host language procedure
previously described, we next check the Overlap Table
to see if the insertion of this record into the
AB(functional)database will violate its integrity.
If so,an error message is issued. Otherwise, the
following ABDL request may be executed)

INSERT (<FILE,record typel>,<recordtypel, ***>,
<data itemsi,user valuesi>,
<set typesi,CIT.settypesi.owner

_database-key>)

Here, we see that the data item values come from the UWA

record template, and the set type values come from the

appropriate set types whose insertion clauses are

AUTOMATIC.

5. The ERASE Statement

The final statement to be mapped in our direct

language interface is the ERASE statement. The mapping of

this statement is made difficult because restraints must be

applied to it, not only due to CODASYL rules, but

functional rules as well. Let us look at the ERASE

statement and its CODASYL restraint. The syntax for the

ERASE statement is as follows:

ERASE record_typel

110



The ERASE statement deletes the current of the run unit

from the database. Obviously, the record in the current of

the run unit must be of type "recordtypel". The CODASYL

restraint placed on this statement is that the record

cannot be an owner of a non-null set type occurrence.

Briefly, this means that we must perform a RETRIEVE request

to see if there are any set-type occurrences for which the

owner database key is the database key of the current of

the run unit.

In addition to the CODASYL restraint mentioned

above, a further limitation is applied as a result of the

target database being functional. In order to describe the

functional restraint on the CODASYL ERASE statement, let us

briefly discuss the functional counterpart to it--the

Daplex DESTROY statement.

The Daplex DESTROY statement deletes an entity from

the functional database. If an entity subtype exists

wherein an occurrence of it derives from the entity we wish

to delete, the subtype occurrence is deleted as well. This

follows on down to the leaves of the hierarchy to which the

original entity belongs. As an example, and referring to

the PERSON generalization hierarchy depicted in Figure 13,

if we wish to delete a particular EMPLOYEE entity, then any

SUPPORTSTAFF or FACULTY entities associated with this

EMPLOYEE entity would be deleted as well.

Iii



There is an important limitation placed on the

DESTROY statement in Daplex. If the entity we wish to

delete is referenced by some other database function, the

DESTROY operation is aborted. An example of this can be

described using the fragment of the University database

schema shown in Figure 23. Herein, we see the entity

subtypes FACULTY, STUDENT and GRADUATE.

SUBTYPE faculty IS employee
ENTITY

rank : rank name;
teaching : SET OF course;
tenure : BOOLEAN :- FALSE;
dept : department;

END ENTITY;

SUBTYPE student IS person
ENTITY

advisor : faculty WITHNULL;
major : department;
enrollments : SET OF enrollment;

.END ENTITY;

SUBTYPE graduate IS student
ENTITY

advisorycommittee : SET OF faculty;
END ENTITY;

Figure 23. University Database Schema Fragment

Let us assume that we wish to delete a FACULTY

record from the database. We would issue the appropriate

DESTROY statement, specifying a particular FACULTY entity

to be deleted. However, one can see that FACULTY is

referenced by both STUDENT and GRADUATE. Daplex requires

that neither STUDENT nor GRADUATE have any entities which

112

.m



reference the particular FACULTY entity we wish to delete.

In effect, if a STUDENT entity has our FACULTY entity for

an advisor, the advisor needs to be changed before the

FACULTY entity can be deleted. In a like manner, our

FACULTY entity cannot be part of an "advisorycommittee"

function in GRADUATE, if it is to be deleted.

When we consider how to map the CODASYL ERASE

statement, we need to keep in mind the limitations imposed

by the Daplex DESTROY statement. Because we are ultimately

dealing with a functional database, we must only perform

operations on it that are consistent with its integrity

constraints. Therefore, we must apply the functional

restraint to our usage of the CODASYL ERASE statement.

This is done in the following manner.

Recalling how the functional schema is mapped to

CODASYL, we note that the "advisor" function in STUDENT is

mapped to a set type whose owner is FACULTY, and whose

member is STUDENT. Similarly, "advisory-committee" in

GRADUATE is mapped to a set type whose owner is GRADUATE,

and whose member is FACULTY. So if there are any records

in the ADVISORYCOMMITTEE set type, or any member records

in the ADVISOR set type which correspond to the FACULTY

record we wish to erase, the process must abort. Where

CODASYL requires that the record not be the owner of any

non-null set occurrences, Daplex that requires the record

not be a member of any set occurrences other than the one

113



connecting it to its parent in the generalization

hierarchy. In this case, the FACULTY member record forms

an ISA relationship with its owner record type, STUDENT.

This is not a fatal combination of restraints by

any means. Not being a member of a set occurrence simply

requires that the record be disconnected from the set type.

Not being an owner of a set occurrence requires that its

members disconnect from it and reconnect to another owner

record before the ERASE operation is carried out.

Therefore, two separate types of RETRIEVE requests

need to be issued in conjunction with the ERASE statement:

one type that finds all of the set occurrences for which

the current of run unit is the owner, and the other type

which finds all of the set occurrences for which the

current of the run unit is a member. If both of these

RETRIEVEs return null RBs, a DELETE request is issued which

i removes the current of the run unit from the database. It

is not necessary to take any actions with respect to the

possible set occurrence between the record and its parent

in the generalization hierarchy, because all information

pertaining to the ISA relationship is carried in the member

record.

The ABDL requests necessary to map the ERASE

statement are as follows:

114



(For each set type which lists the current of run
unit record type as owner, the following request
is generated)

RETRIEVE ((FILE-CIT.settypei.member recordtype) AND
(settypei=CIT.RUNUNIT.databasekey))
(set_typei)

(If the RB for the above request is non-null, abort the
operation. If not, then for each set type which lists
the current of run unit record type as member, with
the exception of one which represents an ISA
relationship, the following request is generated)

RETRIEVE ((FILE=CIT.settypei.owner record type) AND
(set_typei=CIT.RUNUNIT.database key))
(set typei)

(If the RB for the above request is non-null,abort
the operation.If not,then the following request
is generated)

DELETE ((FILE=recordtypel) AND
(record typel=CIT.RUNUNIT.database key))

We note that in the above ABDL requests, we do not

generate a RETRIEVE request to search for owner information

in the record we wish to delete. Since we already have the

record in the RB for the current of the run unit, KMS

checks the record itself to ensure that no information is

present indicating that the record owns other records in a

set occurrence.

-As is previously mentioned in Chapter 2, there is

another ERASE statement available to the CODASYL user--the

ERASE ALL statement. This statement deletes the current of

the run unit from the database. Additionally, if the

115



record is an owner of a set occurrence, each record in the

set occurrence is deleted as well. Also, any set

occurrences associated with these records are themselves

the object of this recursive ERASE operation.

Due to restraints imposed by the functional

database, we do not map this statement to an equivalent

ABDL request,as it would violate the integrity of the

AB(functional) database. The reason for this is as

follows.

Referring once more to Figure 23, let us assume we

wish to use the ERASE ALL option on a FACULTY record. As

is previously discussed, the "advisor" function in the

STUDENT entity subtype maps into a CODASYL set type whose

owner is FACULTY, ard whose member is STUDENT. If the

FACULTY record we wish to delete is the owner of a STUDENT

record by means of this set type, we are restrained from

executing an ERASE statement. However, under the rules of

the ERASE ALL statement, not only are we free to delete the

FACULTY record, but we are required to delete the STUDENT

record as well. Bsides being contrary to the intent and

operation of the Daplex DESTROY statement, this side effect

may have an adverse effect on the integrity of the

AB(functional) database. Therefore, we do not map the

ERASE ALL statement to an equivalent ABDL request.

Not mapping the ERASE ALL statement does not limit

our ability to manipulate the database. In reality, the

116



ERASE ALL statement is nothing more than a convenience for

the CODASYL user to use, in the infrequent case that he

wishes to delete large portions of the database recklessly.

The same effect can be caused by using repeated ERASE

statements instead.

117



VI. CONCLUSIONS

As is discussed in the introduction, the standardized

approach to the design and implementation of a database

system resulted in single-model, single-language database

systems with their inherent lack of flexibility and

extensibility. The multi-lingual database system has been

designed and implemented specifically to address these and

other problems. MLDS currently provides facilities to

store and manipulate information using any of the five sets

of data models and data languages, namely, the

hierarchical/DL/I, relational/SQL, network/CODASYL-DML,

functional/Daplex and attribute-based/ABDL.

A. THE CONTRIBUTION OF THE RESEARCH

In this thesis, we have addressed the topic of

accessing and manipulating information stored in one data

model with the data manipulation facilities of a different

data model. Specifically, we have presented a methodology

for allowing the network/CODASYL-DML user to access and/or

manipulate a functional database as supported by MLDS.

This is the first step in the process of extending our

multi-lingual database system to a true multi-model

database system (MMDS).

In the thesis, we recognized that several approaches

may be taken with respect to the mapping process. Each has

118
.7.



its place in possible data model combinations, so that the

methodology which works for mapping from one model to

another may not be the one which is used for a different

data model combination. We discussed three different

approaches, and gave our reasons for selecting one as the

best approach. The other two approaches should be

considered when other data model combinations are studied.

The chosen approach has entailed translating the

functional database schema to an equivalent network schema,

and mapping CODASYL-DML statements to ABDL requests which

accomplish the intent of the CODASYL-DML statements, while

preserving the integrity of the AB(functional) database.

The constructs used for the network schema, as well as the

CODASYL-DML statements mapped to ABDL requests were taken

from those used in the MLDS network interface [Ref. 8].

Due to the methodology used to translate the functional

database schema to an equivalent network schema, some

network schema constructs have not been needed. As a

result, certain CODASYL-DML statements which utilized these

schema constructs have not been mapped to ABDL requests.

When mapping CODASYL-DML statements to ABDL requests,

we have found it necessary to recall that the target

database is an attribute-based representation of a

functional database. Therefore, rather than blindly

mapping CODASYL-DML statements, the integrity of the

database as well as the intent of the equivalent statements

119

4



in the Daplex data language have been taken into account.

One result of this is that the ERASE ALL statement option

has not been mapped to equivalent ABDL requests, because it

would compromise the integrity of the AB(functional)

database, had it been mapped.

We feel that the methodology presented in this thesis

is sufficient for an implementation, the next step to

providing the first operational portion of MMDS. We also

believe that other mappings from one data model to another

are possible, using one of the three approaches presented

herein. The result will be a database management

capability that is unique in the world today, allowing for

greatly increased productivity and flexibility in the

workplace.

B. SOME OBSERVATIONS AND INSIGHTS

Although it is difficult to say with certainty, it

seems that using CODASYL-DML to manipulate a functional

database is much easier to do when the database is stored

in an attribute-based form, rather than in the functional

form. The functional model supports recursive

relationships, while the network model does not. We have

found CODASYL-DML to be insufficient to do all the things

we wish to do to the functional database, as demonstrated

by the need for an Overlap Table to maintain the

disjointness of entities.

120



What seems to make the mapping possible is the

transformation of the functional model to the attribute-

based model, which successfully captures its

characteristics and constraints. Because of the method by

which this is done--especially the naming conventions of

the database key which allows for name-overloading--we can

successfully deal with the AB(functional) database using

CODASYL-DML.

This process of transformation to an intermediate (or

kernel) data model is not unlike a mathematical process,

which greatly simplifies certain second-order partial

differential equation problems, the Laplace Transform.

Using the Laplace transformation, we map a second-order

partial differential equation from the Euclidian space to

Laplace space, obtain a linear equation, operate on it in

ways that we cannot with the second-order equation, obtain

a solution and perform an inverse Laplace transformation to

map the solution back to the original space. The new

solution is one that we could not easily reach from the

original second-order partial differential equation. The

Laplace transformation process allows us to sidestep many

difficult problems we may otherwise have had to face.

In a like manner, we have transformed the functional

database to an AB(functional) database--one which we can

operate on using CODASYL-DML. We may also be able to

operate on it with relational and/or hierarchical data

121

* , .A :-.-,. - . . / , .-. .\. ...-.- . .



manipulation languages, although this has not been studied.

It seems more likely that the more complex models, such as

the network and functional data models, will be able to

operate with a greater degree of success on the transformed

databases of the less complex models. This is an area

which deserves more study.

122



-! -- -- - - - -

LIST OF REFERENCES

1. Demurjain, S.A. and Hsiao, D.K., "New Directions in
Datasbase-Systems Research and Development," in the
Proceedings of the New Directions in Computing
Conference, Trondheim, Norway, August, 1985; also in
Technical Report, NPS-52-85-001, Naval Postgraduate
School, Monterey, California, February 1985.

2. Banerjee, J. and Hsiao, D.K., "A Methodology for
Supporting Existing CODASYL Databases with New Database
Machines," Proceedings of National ACM Conference,
1978.

3. Banerjee, J. and Hsiao, D.K., "The Use of a Database
Machine for Supporting Relational Databases,"
Proceedings 5th Workshop on Computer Architecture for
Nonnumeric Processing, August 1978.

4. Banerjee, J., Hsiao, D.K., and Ng, F., "Database
Transformation, Query Translation and Performance
Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions
on Software Engineering, Vol. SE-6, No. 1, January 1980.

5. Macy, G., Design and Analysis of an SQL Interface for a
Multi-Backend Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1984.

6. Rollins, R., Design and Analysis of a Comp2lete
Relational Interface for a Multi-Backend Database
System, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1984.

7. Weishar, D., Design and Analysis of a Complete
Hierarchical Interface for a Multi-Backend Database
System, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

8. Wortherly, C.R., The Design and Analysis of a Network
Interface for a Multi-Lingual Database System, Master's
Thesis, Naval Postgraduate School, Monterey,
California, December 1985.

9. Goisman, P.L., The Design and Analysis of a Complete
Entity-Relatio nship Interface for the Multi-Backend
Database System, Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1985.

123



10. Benson, T.P. and Wentz, G.L., The Design and
Implementation of a Hierarchical Interface for the
Multi-Lingual Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1985.

11. Kloepping, G.R. and Mack, J.F., The Design and
Implementation of a Relational Interface for the Multi-
Lingual Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1985.

12. Emdi, B., The Implementation of a CODASYL-DML
Interface for a Mult-ingual Database System, Master's
Thesis, Naval Postgraduate School, Monterey,
California, December 1985.

13. Anthony, J.A. and Billings, A.J., The Implementation
of an Entity-Relationship Interface for the Multi-
Lingual Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, December
1985.

14. The Ohio State University, Columbus, Ohio, Technical
Report OSU-CISRC-TR-81-7, Design and Analysis of a
Multi-Backend Database System for Performance
Improvement, Functionality Expansion, and CapacityGrowth (Part IL, by D.K. Hsiao and M.J. Menon, August
1981.

15. The Ohio State Uni ersity, Colqmbus, Ohio, Technical
Report, OSU-CISRC-TR-81-8, Design and Analysis of a
Multi-Backend Database System for Performance
Improvement, Functionality Expansion and Capacity
Growth (Part Z1, by D.K. Hsiao and M.J. Menon, August
1981.

16. Shipman, D.W., "The Functional Data Model and the Data
Language DAPLEX," ACM Transactions on Database Systems,
Vol. 6, No. 1, March 1981.

17. Computer Corporation of America, Cambridge,
Massachusetts, Technical Report CCA-84-01, Daplex
User's Manual, by S. Fox et al., June 1984.

18. Tsichritzis, D.C. and Lochovsky, F.H., Data Models,
Prentis-Hall, 1982.

19. Banerjee, J. and Hsiao, D.K., "A Methodology for
Supporting Existing CODASYL databases with New Database
Machines," Proceedinqs of National ACM Conference,
1978.

124



20. Hsiao, D.K. and Haray, F., "A Formal System for
Information Retrieval from Files," Communications of
the ACM, Vol. 13, No. 2, February 1970; Corrigenda,
Vol. 13, No. 3, March 1970.

21. The Ohio State University, Columbus, Ohio, Technical
Report OSU-CISR-TR-77-4, DBC Software Requirements for
Supportipg Network Databases, by J. Banerjee, D.K.
Hsiao, and D.S. Kerr, November 1977.

22. Smith, J.M., et al, "Multibase - Integrating
Heterogeneous Distributed Database Systems," National
Computer Conference, 1981, Vol. 50, 1981.

23. Spaccapietra, S., et al, "An Approach to Effective
Heterogeneous Databases Cooperation", Distributed Data
Sharing Systems, edited by R.P. van de Riet and W.
Litwin, North-Holland Publishing Company, 1982.

125



-INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5000

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curriculum Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor David K. Hsiao, Code 52HQ 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

6. Steven A. Demurjian, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. Mr. Frank Manola
Computer Corporation of America
Four Cambridge Center
Cambridge, Massachusetts 02142-1489

8. Rev. Alvin W. Rodeck
201 N. Pine St.
Nokomis. Illinois 62075

9. Capt. Brian D. Rodeck 3
6319 Ember Ct.
Manassas, Virginia 22111

126



iITIq , f


